Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ultra-reliable low-latency vehicular networks : taming the age of information tail

Abdel-Aziz, Mohamed K.; Liu, Chen-Feng; Samarakoon, Sumudu; Bennis, Mehdi; Saad, Walid (2019-02-21)

 
Avaa tiedosto
nbnfi-fe2019041712652.pdf (1020.Kt)
nbnfi-fe2019041712652_meta.xml (36.23Kt)
nbnfi-fe2019041712652_solr.xml (36.04Kt)
Lataukset: 

URL:
https://doi.org/10.1109/GLOCOM.2018.8647466

Abdel-Aziz, Mohamed K.
Liu, Chen-Feng
Samarakoon, Sumudu
Bennis, Mehdi
Saad, Walid
Institute of Electrical and Electronics Engineers
21.02.2019

M. K. Abdel-Aziz, C. Liu, S. Samarakoon, M. Bennis and W. Saad, "Ultra-Reliable Low-Latency Vehicular Networks: Taming the Age of Information Tail," 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 2018, pp. 1-7. doi: 10.1109/GLOCOM.2018.8647466

https://rightsstatements.org/vocab/InC/1.0/
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/GLOCOM.2018.8647466
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019041712652
Tiivistelmä

Abstract

While the notion of age of information (AoI) has recently emerged as an important concept for analyzing ultra-reliable low-latency communications (URLLC), the majority of the existing works have focused on the average AoI measure. However, an average AoI based design falls short in properly characterizing the performance of URLLC systems as it cannot account for extreme events that occur with very low probabilities. In contrast, in this paper, the main objective is to go beyond the traditional notion of average AoI by characterizing and optimizing a URLLC system while capturing the AoI tail distribution. In particular, the problem of vehicles’ power minimization while ensuring stringent latency and reliability constraints in terms of probabilistic AoI is studied. To this end, a novel and efficient mapping between both AoI and queue length distributions is proposed. Subsequently, extreme value theory (EVT) and Lyapunov optimization techniques are adopted to formulate and solve the problem. Simulation results shows a nearly two-fold improvement in terms of shortening the tail of the AoI distribution compared to a baseline whose design is based on the maximum queue length among vehicles, when the number of vehicular user equipment (VUE) pairs is 80. The results also show that this performance gain increases significantly as the number of VUE pairs increases.

Kokoelmat
  • Avoin saatavuus [37744]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen