Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Zero-shot learning via recurrent knowledge transfer

Zhao, Bo; Sun, Xinwei; Hong, Xiaopeng; Yao, Yuan; Wang, Yizhou (2019-03-07)

 
Avaa tiedosto
nbnfi-fe2019080523437.pdf (830.2Kt)
nbnfi-fe2019080523437_meta.xml (33.04Kt)
nbnfi-fe2019080523437_solr.xml (36.88Kt)
Lataukset: 

URL:
https://doi.org/10.1109/WACV.2019.00144

Zhao, Bo
Sun, Xinwei
Hong, Xiaopeng
Yao, Yuan
Wang, Yizhou
Institute of Electrical and Electronics Engineers
07.03.2019

B. Zhao, X. Sun, X. Hong, Y. Yao and Y. Wang, "Zero-Shot Learning Via Recurrent Knowledge Transfer," 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa Village, HI, USA, 2019, pp. 1308-1317. doi: 10.1109/WACV.2019.00144

https://rightsstatements.org/vocab/InC/1.0/
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/WACV.2019.00144
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019080523437
Tiivistelmä

Abstract

Zero-shot learning (ZSL) which aims to learn new concepts without any labeled training data is a promising solution to large-scale concept learning. Recently, many works implement zero-shot learning by transferring structural knowledge from the semantic embedding space to the image feature space. However, we observe that such direct knowledge transfer may suffer from the space shift problem in the form of the inconsistency of geometric structures in the training and testing spaces. To alleviate this problem, we propose a novel method which actualizes recurrent knowledge transfer (RecKT) between the two spaces. Specifically, we unite the two spaces into the joint embedding space in which unseen image data are missing. The proposed method provides a synthesis-refinement mechanism to learn the shared subspace structure (SSS) and synthesize missing data simultaneously in the joint embedding space. The synthesized unseen image data are utilized to construct the classifier for unseen classes. Experimental results show that our method outperforms the state-of-the-art on three popular datasets. The ablation experiment and visualization of the learning process illustrate how our method can alleviate the space shift problem. By product, our method provides a perspective to interpret the ZSL performance by implementing subspace clustering on the learned SSS.

Kokoelmat
  • Avoin saatavuus [37744]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen