URLLC-eMBB slicing to support VR multimodal perceptions over wireless cellular systems
Park, Jihong; Bennis, Mehdi (2019-02-21)
J. Park and M. Bennis, "URLLC-eMBB Slicing to Support VR Multimodal Perceptions over Wireless Cellular Systems," 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 2018, pp. 1-7. doi: 10.1109/GLOCOM.2018.8647208
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
https://urn.fi/URN:NBN:fi-fe2019061019627
Tiivistelmä
Abstract
Virtual reality (VR) enables mobile wireless users to experience multimodal perceptions in a virtual space. In this paper we investigate the problem of concurrent support of visual and haptic perceptions over wireless cellular networks, with a focus on the downlink transmission phase. While the visual perception requires moderate reliability and maximized rate, the haptic perception requires fixed rate and high reliability. Hence, the visuo-haptic VR traffic necessitates the use of two different network slices: enhanced mobile broadband (eMBB) for visual perception and ultra-reliable and low latency communication (URLLC) for haptic perception. We investigate two methods by which these two slices share the downlink resources orthogonally and non-orthogonally, respectively. We compare these methods in terms of the just-noticeable difference (JND), an established measure in psychophysics, and show that non- orthogonal slicing becomes preferable under a higher target integrated-perceptual resolution and/or a higher target rate for haptic perceptions.
Kokoelmat
- Avoin saatavuus [37138]