Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine learning for predictive on-demand deployment of UAVs for wireless communications

Zhang, Qianqian; Mozaffari, Mohammad; Saad, Walid; Bennis, Mehdi; Debbah, Mérouane (2019-02-21)

 
Avaa tiedosto
nbnfi-fe2019061019626.pdf (588.3Kt)
nbnfi-fe2019061019626_meta.xml (33.77Kt)
nbnfi-fe2019061019626_solr.xml (34.34Kt)
Lataukset: 

URL:
https://doi.org/10.1109/GLOCOM.2018.8647209

Zhang, Qianqian
Mozaffari, Mohammad
Saad, Walid
Bennis, Mehdi
Debbah, Mérouane
Institute of Electrical and Electronics Engineers
21.02.2019

Q. Zhang, M. Mozaffari, W. Saad, M. Bennis and M. Debbah, "Machine Learning for Predictive On-Demand Deployment of Uavs for Wireless Communications," 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 2018, pp. 1-6. doi: 10.1109/GLOCOM.2018.8647209

https://rightsstatements.org/vocab/InC/1.0/
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/GLOCOM.2018.8647209
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019061019626
Tiivistelmä

Abstract

In this paper, a novel machine learning (ML) framework is proposed for enabling a predictive, efficient deployment of unmanned aerial vehicles (UAVs), acting as aerial base stations (BSs), to provide on-demand wireless service to cellular users. In order to have a comprehensive analysis of cellular traffic, an ML framework based on a Gaussian mixture model and a weighted expectation maximization algorithm is introduced to predict the potential network congestion. Then, the optimal deployment of UAVs is studied with the objective of minimizing the power needed for UAV transmission and mobility, given the predicted traffic. To this end, first, the optimal partition of service areas of each UAV is derived, based on a fairness principle. Next, the optimal location of each UAV that minimizes the total power consumption is derived. Simulation results show that the proposed ML approach can reduce power needed for downlink transmission and mobility by over 20% and 80%, respectively, compared with an optimal deployment of UAVs with no ML prediction.

Kokoelmat
  • Avoin saatavuus [37744]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen