Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep binary representation of facial expressions : a novel framework for automatic pain intensity recognition

Tavakolian, Mohammad; Hadid, Abdenour (2018-10-07)

 
Avaa tiedosto
nbnfi-fe201902266255.pdf (1.732Mt)
nbnfi-fe201902266255_meta.xml (26.61Kt)
nbnfi-fe201902266255_solr.xml (32.09Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ICIP.2018.8451681

Tavakolian, Mohammad
Hadid, Abdenour
Institute of Electrical and Electronics Engineers
07.10.2018

M. Tavakolian and A. Hadid, "Deep Binary Representation of Facial Expressions: A Novel Framework for Automatic Pain Intensity Recognition," 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, 2018, pp. 1952-1956. doi: 10.1109/ICIP.2018.8451681

https://rightsstatements.org/vocab/InC/1.0/
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ICIP.2018.8451681
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe201902266255
Tiivistelmä

Abstract

Automatic pain assessment is crucial in clinical diagnosis. Experiencing pain causes deformations in the facial structure resulting in different spontaneous facial expressions. In this paper, we aim to represent the facial expressions as a compact binary code for classification of different pain intensity levels. We divide a given face video into non-overlapping equal-length segments. Using a Convolutional Neural Network (CNN), we extract features from randomly sampled frames from all segments. The obtained features are aggregated by exploiting statistics to incorporate low-level visual patterns and high-level structural information. Finally, this processed information is encoded using a deep network to obtain a single binary code such that videos with the same pain intensity level have smaller Hamming distance than those of different levels. Extensive experiments on the publicly available UNBC-McMaster database demonstrates that our proposed method achieves superior performance compared to the state-of-the-art.

Kokoelmat
  • Avoin saatavuus [37647]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen