Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hallucinating face image by regularization models in high-resolution feature space

Shi, Jingang; Liu, Xin; Zong, Yuan; Qi, Chun; Zhao, Guoying (2018-03-09)

 
Avaa tiedosto
nbnfi-fe201902256128.pdf (3.944Mt)
nbnfi-fe201902256128_meta.xml (36.10Kt)
nbnfi-fe201902256128_solr.xml (39.81Kt)
Lataukset: 

URL:
http://doi.org/10.1109/TIP.2018.2813163

Shi, Jingang
Liu, Xin
Zong, Yuan
Qi, Chun
Zhao, Guoying
Institute of Electrical and Electronics Engineers
09.03.2018

J. Shi, X. Liu, Y. Zong, C. Qi and G. Zhao, "Hallucinating Face Image by Regularization Models in High-Resolution Feature Space," in IEEE Transactions on Image Processing, vol. 27, no. 6, pp. 2980-2995, June 2018. doi: 10.1109/TIP.2018.2813163

https://rightsstatements.org/vocab/InC/1.0/
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TIP.2018.2813163
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe201902256128
Tiivistelmä

Abstract

In this paper, we propose two novel regularization models in patch-wise and pixel-wise, respectively, which are efficient to reconstruct high-resolution (HR) face image from low-resolution (LR) input. Unlike the conventional patch-based models which depend on the assumption of local geometry consistency in LR and HR spaces, the proposed method directly regularizes the relationship between the target patch and corresponding training set in the HR space. It avoids dealing with the tough problem of preserving local geometry in various resolutions. Taking advantage of kernel function in efficiently describing intrinsic features, we further conduct the patch-based reconstruction model in the high-dimensional kernel space for capturing nonlinear characteristics. Meanwhile, a pixel-based model is proposed to regularize the relationship of pixels in the local neighborhood, which can be employed to enhance the fuzzy details in the target HR face image. It privileges the reconstruction of pixels along the dominant orientation of structure, which is useful for preserving high-frequency information on complex edges. Finally, we combine the two reconstruction models into a unified framework. The output HR face image can be finally optimized by performing an iterative procedure. Experimental results demonstrate that the proposed face hallucination method produces superior performance than the state-of-the-art methods.

Kokoelmat
  • Avoin saatavuus [38319]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen