Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Leveraging unlabeled whole-slide-images for mitosis detection

Akram, Saad Ullah; Qaiser, Talha; Graham, Simon; Kannala, Juho; Heikkilä, Janne; Rajpoot, Nasir (2018-09-14)

 
Avaa tiedosto
nbnfi-fe2019060618780.pdf (927.5Kt)
nbnfi-fe2019060618780_meta.xml (46.77Kt)
nbnfi-fe2019060618780_solr.xml (39.35Kt)
Lataukset: 

URL:
https://doi.org/10.1007/978-3-030-00949-6_9

Akram, Saad Ullah
Qaiser, Talha
Graham, Simon
Kannala, Juho
Heikkilä, Janne
Rajpoot, Nasir
Springer Nature
14.09.2018

Akram S.U., Qaiser T., Graham S., Kannala J., Heikkilä J., Rajpoot N. (2018) Leveraging Unlabeled Whole-Slide-Images for Mitosis Detection. In: Stoyanov D. et al. (eds) Computational Pathology and Ophthalmic Medical Image Analysis. OMIA 2018, COMPAY 2018. Lecture Notes in Computer Science, vol 11039. Springer, Cham

https://rightsstatements.org/vocab/InC/1.0/
© Springer Nature Switzerland AG 2018. This is a post-peer-review, pre-copyedit version of an article published in OMIA 2018, COMPAY 2018: Computational Pathology and Ophthalmic Medical Image Analysis. The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-00949-6_9.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1007/978-3-030-00949-6_9
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019060618780
Tiivistelmä

Abstract

Mitosis count is an important biomarker for prognosis of various cancers. At present, pathologists typically perform manual counting on a few selected regions of interest in breast whole-slide-images (WSIs) of patient biopsies. This task is very time-consuming, tedious and subjective. Automated mitosis detection methods have made great advances in recent years. However, these methods require exhaustive labeling of a large number of selected regions of interest. This task is very expensive because expert pathologists are needed for reliable and accurate annotations. In this paper, we present a semi-supervised mitosis detection method which is designed to leverage a large number of unlabeled breast cancer WSIs. As a result, our method capitalizes on the growing number of digitized histology images, without relying on exhaustive annotations, subsequently improving mitosis detection. Our method first learns a mitosis detector from labeled data, uses this detector to mine additional mitosis samples from unlabeled WSIs, and then trains the final model using this larger and diverse set of mitosis samples. The use of unlabeled data improves F1-score by ∼5% compared to our best performing fully-supervised model on the TUPAC validation set. Our submission (single model) to TUPAC challenge ranks highly on the leaderboard with an F1-score of 0.64.

Kokoelmat
  • Avoin saatavuus [37744]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen