Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hidden states exploration for 3D skeleton-based gesture recognition

Liu, Xin; Shi, Henglin; Hong, Xiaopeng; Chen, Haoyu; Tao, Dacheng; Zhao, Guoying (2019-03-07)

 
Avaa tiedosto
nbnfi-fe2019072923218.pdf (1.532Mt)
nbnfi-fe2019072923218_meta.xml (39.32Kt)
nbnfi-fe2019072923218_solr.xml (36.77Kt)
Lataukset: 

URL:
https://doi.org/10.1109/WACV.2019.00201

Liu, Xin
Shi, Henglin
Hong, Xiaopeng
Chen, Haoyu
Tao, Dacheng
Zhao, Guoying
Institute of Electrical and Electronics Engineers
07.03.2019

X. Liu, H. Shi, X. Hong, H. Chen, D. Tao and G. Zhao, "Hidden States Exploration for 3D Skeleton-Based Gesture Recognition," 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa Village, HI, USA, 2019, pp. 1846-1855. doi: 10.1109/WACV.2019.00201

https://rightsstatements.org/vocab/InC/1.0/
© 2019 IEEE.Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/WACV.2019.00201
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019072923218
Tiivistelmä

Abstract

3D skeletal data has recently attracted wide attention in human behavior analysis for its robustness to variant scenes, while accurate gesture recognition is still challenging. The main reason lies in the high intra-class variance caused by temporal dynamics. A solution is resorting to the generative models, such as the hidden Markov model (HMM). However, existing methods commonly assume fixed anchors for each hidden state, which is hard to depict the explicit temporal structure of gestures. Based on the observation that a gesture is a time series with distinctly defined phases, we propose a new formulation to build temporal compositions of gestures by the low-rank matrix decomposition. The only assumption is that the gesture’s “hold” phases with static poses are linearly correlated among each other. As such, a gesture sequence could be segmented into temporal states with semantically meaningful and discriminative concepts. Furthermore, different to traditional HMMs which tend to use specific distance metric for clustering and ignore the temporal contextual information when estimating the emission probability, the Long Short-Term Memory (LSTM) is utilized to learn probability distributions over states of HMM. The proposed method is validated on two challenging datasets. Experiments demonstrate that our approach can effectively work on a wide range of gestures and actions, and achieve state-of-the-art performance.

Kokoelmat
  • Avoin saatavuus [37559]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen