Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning-based caching in cloud-aided wireless networks

Tamoor-ul-Hassan, Syed; Samarakoon, Sumudu; Bennis, Mehdi; Latva-aho, Matti; Seon Hong, Choong Seon (2018-01-01)

 
Avaa tiedosto
nbnfi-fe2019060518443.pdf (462.5Kt)
nbnfi-fe2019060518443_meta.xml (37.04Kt)
nbnfi-fe2019060518443_solr.xml (31.31Kt)
Lataukset: 

URL:
https://doi.org/10.1109/LCOMM.2017.2759270

Tamoor-ul-Hassan, Syed
Samarakoon, Sumudu
Bennis, Mehdi
Latva-aho, Matti
Seon Hong, Choong Seon
Institute of Electrical and Electronics Engineers
01.01.2018

S. Tamoor-ul-Hassan, S. Samarakoon, M. Bennis, M. Latva-aho and C. S. Hong, "Learning-Based Caching in Cloud-Aided Wireless Networks," in IEEE Communications Letters, vol. 22, no. 1, pp. 137-140, Jan. 2018. doi: 10.1109/LCOMM.2017.2759270

https://rightsstatements.org/vocab/InC/1.0/
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/LCOMM.2017.2759270
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019060518443
Tiivistelmä

Abstract

This letter studies content caching in cloud-aided wireless networks, where small cell base stations with limited storage are connected to the cloud via limited capacity fronthaul links. By formulating a utility (inverse of service delay) maximization problem, we propose a cache update algorithm based on spatio-temporal traffic demands. To account for the large number of contents, we propose a content clustering algorithm to group similar contents. Subsequently, with the aid of regret learning at small cell base stations and the cloud, each base station caches contents based on the learned content popularity subject to its storage constraints. The performance of the proposed caching algorithm is evaluated for sparse and dense environments, while investigating the tradeoff between global and local class popularity. Simulation results show 15% and 40% gains in the proposed method compared to various baselines.

Kokoelmat
  • Avoin saatavuus [38549]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen