Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Approaching vehicle detection method with acoustic analysis using smartphone for elderly bicycle driver

Kawanaka, Shogo; Kashimoto, Yukitoshi; Firouzian, Aryan; Arakawa, Yutaka; Pulli, Petri; Yasumoto, Keiichi (2018-04-05)

 
Avaa tiedosto
nbnfi-fe2019050314083.pdf (1.191Mt)
nbnfi-fe2019050314083_meta.xml (36.13Kt)
nbnfi-fe2019050314083_solr.xml (30.83Kt)
Lataukset: 

URL:
https://doi.org/10.23919/ICMU.2017.8330069

Kawanaka, Shogo
Kashimoto, Yukitoshi
Firouzian, Aryan
Arakawa, Yutaka
Pulli, Petri
Yasumoto, Keiichi
Institute of Electrical and Electronics Engineers
05.04.2018

S. Kawanaka, Y. Kashimoto, A. Firouzian, Y. Arakawa, P. Pulli and K. Yasumoto, "Approaching vehicle detection method with acoustic analysis using smartphone for elderly bicycle driver," 2017 Tenth International Conference on Mobile Computing and Ubiquitous Network (ICMU), Toyama, 2017, pp. 1-6. doi: 10.23919/ICMU.2017.8330069

https://rightsstatements.org/vocab/InC/1.0/
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.23919/ICMU.2017.8330069
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019050314083
Tiivistelmä

Abstract

More than 60 percentage of fatal accidents while riding a bicycle is caused by elderly people over 65 years old. The main cause is the detection delay of approaching vehicle caused by the decrease of cognitive function due to aging. In this paper, we propose an approaching vehicle detection method using a smartphone aiming to support bicycle operation to prevent elderly people from fatal accidents while riding a bicycle vehicle. Among various sensors embedded in a smartphone, we focus on microphone as the most suitable sensor for detecting an approaching vehicle. We collected sound data in a real environment and created an approaching vehicle detection model by using machine learning. Finally, as a result of accuracy evaluation with 10-fold cross-validation, we confirmed that it can detect approaching vehicle with an average F-value of 97.4 [%].

Kokoelmat
  • Avoin saatavuus [37837]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen