Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

A joint optimization framework of low-dimensional projection and collaborative representation for discriminative classification

Liu, Xiaofeng; Li, Zhaofeng; Kong, Lingsheng; Diao, Zhihui; Yan, Junliang; Zou, Yang; Yang, Chao; Jia, Ping; You, Jane (2018-11-29)

 
Avaa tiedosto
nbnfi-fe2019062722214.pdf (869.1Kt)
nbnfi-fe2019062722214_meta.xml (42.34Kt)
nbnfi-fe2019062722214_solr.xml (35.37Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ICPR.2018.8545267

Liu, Xiaofeng
Li, Zhaofeng
Kong, Lingsheng
Diao, Zhihui
Yan, Junliang
Zou, Yang
Yang, Chao
Jia, Ping
You, Jane
Institute of Electrical and Electronics Engineers
29.11.2018

X. Liu et al., "A joint optimization framework of low-dimensional projection and collaborative representation for discriminative classification," 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, 2018, pp. 1493-1498. doi: 10.1109/ICPR.2018.8545267

https://rightsstatements.org/vocab/InC/1.0/
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ICPR.2018.8545267
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019062722214
Tiivistelmä

Abstract

Various representation-based methods have been developed and shown great potential for pattern classification. To further improve their discriminability, we propose a Bi-level optimization framework in terms of both low-dimensional projection and collaborative representation. Specifically, during the projection phase, we try to minimize the intra-class similarity and inter-class dissimilarity, while in the representation phase, our goal is to achieve the lowest correlation of the representation results. Solving this joint optimization mutually reinforces both aspects of feature projection and representation. Experiments on face recognition, object categorization and scene classification dataset demonstrate remarkable performance improvements led by the proposed framework.

Kokoelmat
  • Avoin saatavuus [37744]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen