Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Spatiotemporal recurrent convolutional networks for recognizing spontaneous micro-expressions

Xia, Zhaoqiang; Hong, Xiaopeng; Gao, Xingyu; Feng, Xiaoyi; Zhao, Guoying (2019-07-26)

 
Avaa tiedosto
nbnfi-fe2019120345372.pdf (1.681Mt)
nbnfi-fe2019120345372_meta.xml (32.94Kt)
nbnfi-fe2019120345372_solr.xml (36.13Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TMM.2019.2931351

Xia, Zhaoqiang
Hong, Xiaopeng
Gao, Xingyu
Feng, Xiaoyi
Zhao, Guoying
Institute of Electrical and Electronics Engineers
26.07.2019

Z. Xia, X. Hong, X. Gao, X. Feng and G. Zhao, "Spatiotemporal Recurrent Convolutional Networks for Recognizing Spontaneous Micro-Expressions," in IEEE Transactions on Multimedia, vol. 22, no. 3, pp. 626-640, March 2020. https://doi.org/10.1109/TMM.2019.2931351

https://rightsstatements.org/vocab/InC/1.0/
© 2019 IEEE.Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TMM.2019.2931351
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019120345372
Tiivistelmä

Abstract

Recently, the recognition task of spontaneous facial micro-expressions has attracted much attention with its various real-world applications. Plenty of handcrafted or learned features have been employed for a variety of classifiers and achieved promising performances for recognizing micro-expressions. However, the micro-expression recognition is still challenging due to the subtle spatiotemporal changes of micro-expressions. To exploit the merits of deep learning, we propose a novel deep recurrent convolutional networks based micro-expression recognition approach, capturing the spatiotemporal deformations of micro-expression sequence. Specifically, the proposed deep model is constituted of several recurrent convolutional layers for extracting visual features and a classificatory layer for recognition. It is optimized by an end-to-end manner and obviates manual feature design. To handle sequential data, we exploit two ways to extend the connectivity of convolutional networks across temporal domain, in which the spatiotemporal deformations are modeled in views of facial appearance and geometry separately. Besides, to overcome the shortcomings of limited and imbalanced training samples, two temporal data augmentation strategies as well as a balanced loss are jointly used for our deep network. By performing the experiments on three spontaneous micro-expression datasets, we verify the effectiveness of our proposed micro-expression recognition approach compared to the state-of-the-art methods.

Kokoelmat
  • Avoin saatavuus [37606]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen