Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Application of a semi-automatic cartilage segmentation method for biomechanical modeling of the knee joint

Liukkonen, Mimmi K.; Mononen, Mika E.; Tanska, Petri; Saarakkala, Simo (2017-09-12)

 
Avaa tiedosto
nbnfi-fe2019111438078.pdf (1.471Mt)
nbnfi-fe2019111438078_meta.xml (34.48Kt)
nbnfi-fe2019111438078_solr.xml (37.81Kt)
Lataukset: 

URL:
https://doi.org/10.1080/10255842.2017.1375477

Liukkonen, Mimmi K.
Mononen, Mika E.
Tanska, Petri
Saarakkala, Simo
Informa
12.09.2017

Mimmi K. Liukkonen, Mika E. Mononen, Petri Tanska, Simo Saarakkala, Miika T. Nieminen & Rami K. Korhonen (2017) Application of a semi-automatic cartilage segmentation method for biomechanical modeling of the knee joint, Computer Methods in Biomechanics and Biomedical Engineering, 20:13, 1453-1463, DOI: 10.1080/10255842.2017.1375477

https://rightsstatements.org/vocab/InC/1.0/
© Taylor & Francis 2017. This is an Accepted Manuscript of an article published by Taylor & Francis in Computer Methods in Biomechanics and Biomedical Engineering on 12.9.2017, available online: https://doi.org/10.1080/10255842.2017.1375477.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1080/10255842.2017.1375477
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019111438078
Tiivistelmä

Abstract

Manual segmentation of articular cartilage from knee joint 3D magnetic resonance images (MRI) is a time consuming and laborious task. Thus, automatic methods are needed for faster and reproducible segmentations. In the present study, we developed a semi-automatic segmentation method based on radial intensity profiles to generate 3D geometries of knee joint cartilage which were then used in computational biomechanical models of the knee joint. Six healthy volunteers were imaged with a 3T MRI device and their knee cartilages were segmented both manually and semi-automatically. The values of cartilage thicknesses and volumes produced by these two methods were compared. Furthermore, the influences of possible geometrical differences on cartilage stresses and strains in the knee were evaluated with finite element modeling. The semi-automatic segmentation and 3D geometry construction of one knee joint (menisci, femoral and tibial cartilages) was approximately two times faster than with manual segmentation. Differences in cartilage thicknesses, volumes, contact pressures, stresses, and strains between segmentation methods in femoral and tibial cartilage were mostly insignificant (p > 0.05) and random, i.e. there were no systematic differences between the methods. In conclusion, the devised semi-automatic segmentation method is a quick and accurate way to determine cartilage geometries; it may become a valuable tool for biomechanical modeling applications with large patient groups.

Kokoelmat
  • Avoin saatavuus [37606]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen