Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Method for segmentation of knee articular cartilages based on contrast-enhanced CT images

Myller, Katariina A. H.; Honkanen, Juuso T. J.; Jurvelin, Jukka S.; Saarakkala, Simo; Töyräs, Juha; Väänänen, Sami P. (2018-08-21)

 
Avaa tiedosto
nbnfi-fe2019111438084.pdf (1.070Mt)
nbnfi-fe2019111438084_meta.xml (38.42Kt)
nbnfi-fe2019111438084_solr.xml (41.01Kt)
Lataukset: 

URL:
https://doi.org/10.1007/s10439-018-2081-z

Myller, Katariina A. H.
Honkanen, Juuso T. J.
Jurvelin, Jukka S.
Saarakkala, Simo
Töyräs, Juha
Väänänen, Sami P.
Springer Nature
21.08.2018

Myller, K.A.H., Honkanen, J.T.J., Jurvelin, J.S. et al. Ann Biomed Eng (2018) 46: 1756. https://doi.org/10.1007/s10439-018-2081-z

https://rightsstatements.org/vocab/InC/1.0/
© Biomedical Engineering Society 2018. This is a post-peer-review, pre-copyedit version of an article published in Annals of Biomedical Engineering. The final authenticated version is available online at: https://doi.org/10.1007/s10439-018-2081-z.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1007/s10439-018-2081-z
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019111438084
Tiivistelmä

Abstract

Segmentation of contrast-enhanced computed tomography (CECT) images enables quantitative evaluation of morphology of articular cartilage as well as the significance of the lesions. Unfortunately, automatic segmentation methods for CECT images are currently lacking. Here, we introduce a semiautomated technique to segment articular cartilage from in vivo CECT images of human knee. The segmented cartilage geometries of nine knee joints, imaged using a clinical CT-scanner with an intra-articular contrast agent, were compared with manual segmentations from CT and magnetic resonance (MR) images. The Dice similarity coefficients (DSCs) between semiautomatic and manual CT segmentations were 0.79–0.83 and sensitivity and specificity values were also high (0.76–0.86). When comparing semiautomatic and manual CT segmentations, mean cartilage thicknesses agreed well (intraclass correlation coefficient = 0.85–0.93); the difference in thickness (mean ± SD) was 0.27 ± 0.03 mm. Differences in DSC, when MR segmentations were compared with manual and semiautomated CT segmentations, were statistically insignificant. Similarly, differences in volume were not statistically significant between manual and semiautomatic CT segmentations. Semiautomation decreased the segmentation time from 450 ± 190 to 42 ± 10 min per joint. The results reveal that the proposed technique is fast and reliable for segmentation of cartilage. Importantly, this is the first study presenting semiautomated segmentation of cartilage from CECT images of human knee joint with minimal user interaction.

Kokoelmat
  • Avoin saatavuus [37920]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen