Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Spatially independent martingales, intersections, and applications

Shmerkin, Pablo; Suomala, Ville (2017-10-31)

 
Avaa tiedosto
nbnfi-fe201901142081.pdf (1.407Mt)
nbnfi-fe201901142081_meta.xml (27.83Kt)
nbnfi-fe201901142081_solr.xml (28.97Kt)
Lataukset: 

URL:
https://doi.org/10.1090/memo/1195

Shmerkin, Pablo
Suomala, Ville
American Mathematical Society
31.10.2017

Shmerkin, P., Suomala, V. (2018) Spatially independent martingales, intersections, and applications. Memoirs of the American Mathematical Society, 251, 1195. https://doi.org/10.1090/memo/1195

https://rightsstatements.org/vocab/InC/1.0/
© 2017 Memoirs of the American Mathematical Society. First published in Memoirs of the American Mathematical Society in Year: 2018; Volume 251, Number 1195 published by the American Mathematical Society,
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1090/memo/1195
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe201901142081
Tiivistelmä

Abstract

We define a class of random measures, spatially independent martingales, which we view as a natural generalization of the canonical random discrete set, and which includes as special cases many variants of fractal percolation and Poissonian cut-outs. We pair the random measures with deterministic families of parametrized measures {ηt}t, and show that under some natural checkable conditions, a.s. the mass of the intersections is Hölder continuous as a function of t. This continuity phenomenon turns out to underpin a large amount of geometric information about these measures, allowing us to unify and substantially generalize a large number of existing results on the geometry of random Cantor sets and measures, as well as obtaining many new ones. Among other things, for large classes of random fractals we establish (a) very strong versions of the Marstrand-Mattila projection and slicing results, as well as dimension conservation, (b) slicing results with respect to algebraic curves and self-similar sets, (c) smoothness of convolutions of measures, including self-convolutions, and nonempty interior for sumsets, (d) rapid Fourier decay. Among other applications, we obtain an answer to a question of I. Laba in connection to the restriction problem for fractal measures.

Kokoelmat
  • Avoin saatavuus [37920]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen