Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

3D facial expression recognition based on multi-view and prior knowledge fusion

Vo, Quang Nhat; Tran, Khanh; Zhao, Guoying (2019-11-18)

 
Avaa tiedosto
nbnfi-fe2019120245170.pdf (814.2Kt)
nbnfi-fe2019120245170_meta.xml (29.66Kt)
nbnfi-fe2019120245170_solr.xml (29.57Kt)
Lataukset: 

URL:
https://doi.org/10.1109/MMSP.2019.8901797

Vo, Quang Nhat
Tran, Khanh
Zhao, Guoying
Institute of Electrical and Electronics Engineers
18.11.2019

Q. N. Vo, K. Tran and G. Zhao, "3D Facial Expression Recognition Based on Multi-View and Prior Knowledge Fusion," 2019 IEEE 21st International Workshop on Multimedia Signal Processing (MMSP), Kuala Lumpur, Malaysia, 2019, pp. 1-6. doi: 10.1109/MMSP.2019.8901797

https://rightsstatements.org/vocab/InC/1.0/
©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/MMSP.2019.8901797
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019120245170
Tiivistelmä

Abstract

This paper presents a novel multi-view convolutional neural network (CNN) model for 3D facial expression recognition (FER). In contrast to existing deep learning-based 3D FER approaches that mainly learn the expressions from frontal facial attribute images, the proposed model incorporates multi-view and facial prior information of the observed 3D face into the learning process. This information is jointly trained in an end-to-end manner to predict the emotion of the input 3D face model. The experiments on public 3D facial expression datasets show that training the CNN with additional information from different views and facial prior knowledge would result in learning more discriminative features as against from a single view. Our model outperforms the state-of-the-art 3D FER methods in term of recognition accuracy indicating its effectiveness. Moreover, the improvement of the proposed model is displayed more clearly in the discrimination of low-intensity facial expressions.

Kokoelmat
  • Avoin saatavuus [37559]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen