Urea-water-solution properties : density, viscosity, and surface tension in an under-saturated solution
Halonen, Sauli; Kangas, Teija; Haataja, Mauri; Lassi, Ulla (2016-12-06)
Halonen, S., Kangas, T., Haataja, M. et al. Emiss. Control Sci. Technol. (2017) 3: 161. https://doi.org/10.1007/s40825-016-0051-1
© Springer International Publishing Switzerland 2016. This is a post-peer-review, pre-copyedit version of an article published in Emiss. Control Sci. Technol. The final authenticated version is available online at: https://doi.org/10.1007/s40825-016-0051-1.
https://rightsstatements.org/vocab/InC/1.0/
https://urn.fi/URN:NBN:fi-fe2019112544182
Tiivistelmä
Abstract
A temperature-concentration dependent surface fit for the relative viscosity of a urea-water-solution (UWS) is calculated based on experimental and literature data. For the surface fit, a 2D Lorentzian function was used, where the x-axis was assigned to a urea mass fraction and the y-axis to the solution temperature and the rest of the Lorentzian function parameters were optimized based on the experimental and literature data. The surface model describes the relative viscosity of under-saturated urea-water-solution. The experimental data for the kinematic viscosity was measured with an Ubbelohde capillary viscometer whose temperature was controlled with a thermostat. The temperature and concentration range was from 293.15 to 353.15 K in 10-K increments and for urea mass fractions from 0.325 to 0.7. The kinematic viscosity values from the experiment were converted to relative viscosity by calculating the density of the UWS. An exponential fit was calculated to describe the specific gravity of the UWS based on literature data. Additionally, the surface tension of the UWS was measured at room temperature (293.15 K) in a mass fraction range from 0.302 to 0.596. As a result, simple models describing UWS properties were obtained and these models can be implemented into computational fluid dynamics (CFD) simulations.
Kokoelmat
- Avoin saatavuus [34150]