Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Distributed distortion-rate optimized compressed sensing in wireless sensor networks

Leinonen, Markus; Codreanu, Marian; Juntti, Markku (2018-01-08)

 
Avaa tiedosto
nbnfi-fe201804196730.pdf (712.9Kt)
nbnfi-fe201804196730_meta.xml (34.59Kt)
nbnfi-fe201804196730_solr.xml (32.25Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TCOMM.2018.2790385

Leinonen, Markus
Codreanu, Marian
Juntti, Markku
Institute of Electrical and Electronics Engineers
08.01.2018

M. Leinonen, M. Codreanu and M. Juntti, "Distributed Distortion-Rate Optimized Compressed Sensing in Wireless Sensor Networks," in IEEE Transactions on Communications, vol. 66, no. 4, pp. 1609-1623, April 2018. doi: 10.1109/TCOMM.2018.2790385

https://rightsstatements.org/vocab/InC/1.0/
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TCOMM.2018.2790385
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe201804196730
Tiivistelmä

Abstract

This paper addresses lossy distributed source coding for acquiring correlated sparse sources via compressed sensing (CS) in wireless sensor networks. Noisy CS measurements are separately encoded at a finite rate by each sensor, followed by the joint reconstruction of the sources at the decoder. We develop a novel complexity-constrained distributed variable-rate quantized CS method, which minimizes a weighted sum between the mean square error signal reconstruction distortion and the average encoding rate. The encoding complexity of each sensor is restrained by pre-quantizing the encoder input, i.e., the CS measurements, via vector quantization. Following the entropy-constrained design, each encoder is modeled as a quantizer followed by a lossless entropy encoder, and variable-rate coding is incorporated via rate measures of an entropy bound. For a two-sensor system, necessary optimality conditions are derived, practical training algorithms are proposed, and complexity analysis is provided. Numerical results show that the proposed method achieves superior compression performance as compared with baseline methods, and lends itself to versatile setups with different performance requirements.

Kokoelmat
  • Avoin saatavuus [38400]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen