Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Getting more out of small data sets : improving the calibration performance of isotonic regression by generating more data

Alasalmi, Tuomo; Koskimäki, Heli; Suutala, Jaakko; Röning, Juha (2018-01-16)

 
Avaa tiedosto
nbnfi-fe2018060525273.pdf (196.6Kt)
nbnfi-fe2018060525273_meta.xml (39.95Kt)
nbnfi-fe2018060525273_solr.xml (29.86Kt)
Lataukset: 

URL:
http://www.scitepress.org/Papers/2018/65760/65760.pdf

Alasalmi, Tuomo
Koskimäki, Heli
Suutala, Jaakko
Röning, Juha
Science and Technology Publications
16.01.2018

Alasalmi T., Koskimäki H., Suutala J. and Röning J. (2018). Getting More Out of Small Data Sets - Improving the Calibration Performance of Isotonic Regression by Generating More Data. In Proceedings of the 10th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, ISBN 978-989-758-275-2, pages 379-386. DOI: 10.5220/0006576003790386

https://rightsstatements.org/vocab/InC/1.0/
Copyright of the contribution is owned by the publisher, Science and Technology Publications (SCITEPRESS), http://www.scitepress.org. Published in this repository with the kind permission of the publisher.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.5220/0006576003790386
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2018060525273
Tiivistelmä

Abstract

Often it is necessary to have an accurate estimate of the probability that a classifier prediction is indeed correct. Many classifiers output a prediction score that can be used as an estimate of that probability but for many classifiers these prediction scores are not well calibrated. If enough training data is available, it is possible to post process these scores by learning a mapping from the prediction scores to probabilities. One of the most used calibration algorithms is isotonic regression. This kind of calibration, however, requires a decent amount of training data to not overfit. But many real world data sets do not have excess amount of data that can be set aside for calibration. In this work, we have developed a data generation algorithm to produce more data from a limited sized training data set. We used two variations of this algorithm to generate the calibration data set for isotonic regression calibration and compared the results to the traditional approach of setting aside part of the training data for calibration. Our experimental results suggest that this can be a viable option for smaller data sets if good calibration is essential.

Kokoelmat
  • Avoin saatavuus [37744]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen