Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reinforcement learning system to mitigate small-cell interference through directionality

Paatelma, Anton; Nguyen, Danh H.; Saarnisaari, Harri; Kandasamy, Nagarajan; Dandekar, Kapil R. (2018-02-15)

 
Avaa tiedosto
nbnfi-fe2018091235470.pdf (1.802Mt)
nbnfi-fe2018091235470_meta.xml (33.78Kt)
nbnfi-fe2018091235470_solr.xml (33.67Kt)
Lataukset: 

URL:
https://doi.org/10.1109/PIMRC.2017.8292393

Paatelma, Anton
Nguyen, Danh H.
Saarnisaari, Harri
Kandasamy, Nagarajan
Dandekar, Kapil R.
Institute of Electrical and Electronics Engineers
15.02.2018

A. Paatelma, D. H. Nguyen, H. Saarnisaari, N. Kandasamy and K. R. Dandekar, "Reinforcement learning system to mitigate small-cell interference through directionality," 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, 2017, pp. 1-7. doi: 10.1109/PIMRC.2017.8292393

https://rightsstatements.org/vocab/InC/1.0/
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/PIMRC.2017.8292393
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2018091235470
Tiivistelmä

Abstract

Beam-steering techniques using directional antennas are expected to play an important role in wireless network capacity expansion through ubiquitous small-cell deployment. However, integrating directional antennas into the existing wireless PHY and MAC stack of small cells has been challenging due to the added protocol overhead and lack of a robust antenna beam selection technique that can adapt well to environmental changes. This paper presents the design, implementation, and evaluation of LinkPursuit, a novel learning protocol for distributed antenna state selection in directional small-cell networks. LinkPursuit relies on reconfigurable antennas and a synchronous TimeDivision Multiple Access (TDMA) MAC to achieve simultaneous directional transmission and reception. Further, the system employs a practical antenna selection protocol based on the well known adaptive pursuit algorithm from the reinforcement learning literature. We implement a realtime prototype of LinkPursuit on the WARP platform and conduct extensive experiments to evaluate its performance. The empirical results show that appropriate use of directionality in LinkPursuit can result in higher network sum rates than omnidirectional transmission under various degrees of cross-link interference.

Kokoelmat
  • Avoin saatavuus [38618]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen