Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Near-atomic structure of jasplakinolide-stabilized malaria parasite F-actin reveals the structural basis of filament instability

Pospich, Sabrina; Kumpula, Esa-Pekka; von der Ecken, Julian; Vahokoski, Juha; Kursula, Inari; Raunser, Stefan (2017-09-18)

 
Avaa tiedosto
nbnfi-fe201803206087.pdf (1.326Mt)
nbnfi-fe201803206087_meta.xml (43.22Kt)
nbnfi-fe201803206087_solr.xml (39.76Kt)
Lataukset: 

URL:
https://doi.org/10.1073/pnas.1707506114

Pospich, Sabrina
Kumpula, Esa-Pekka
von der Ecken, Julian
Vahokoski, Juha
Kursula, Inari
Raunser, Stefan
National Academy of Sciences of the United States of America
18.09.2017

Pospich, S., Kumpula, E., von der Ecken, J., Vahokoski, J., Kursula, I., Raunser, S. (2017) Near-atomic structure of jasplakinolide-stabilized malaria parasite F-actin reveals the structural basis of filament instability. Proceedings of the National Academy of Sciences, 114 (40), 10636-10641. doi:10.1073/pnas.1707506114

https://rightsstatements.org/vocab/InC/1.0/
Copyright © 2018 National Academy of Sciences. Published in this repository with the kind permission of the publisher.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1073/pnas.1707506114
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe201803206087
Tiivistelmä

Abstract

During their life cycle, apicomplexan parasites, such as the malaria parasite Plasmodium falciparum, use actomyosin-driven gliding motility to move and invade host cells. For this process, actin filament length and stability are temporally and spatially controlled. In contrast to canonical actin, P. falciparum actin 1 (PfAct1) does not readily polymerize into long, stable filaments. The structural basis of filament instability, which plays a pivotal role in host cell invasion, and thus infectivity, is poorly understood, largely because high-resolution structures of PfAct1 filaments were missing. Here, we report the near-atomic structure of jasplakinolide (JAS)-stabilized PfAct1 filaments determined by electron cryomicroscopy. The general filament architecture is similar to that of mammalian F-actin. The high resolution of the structure allowed us to identify small but important differences at inter- and intrastrand contact sites, explaining the inherent instability of apicomplexan actin filaments. JAS binds at regular intervals inside the filament to three adjacent actin subunits, reinforcing filament stability by hydrophobic interactions. Our study reveals the high-resolution structure of a small molecule bound to F-actin, highlighting the potential of electron cryomicroscopy for structure-based drug design. Furthermore, our work serves as a strong foundation for understanding the structural design and evolution of actin filaments and their function in motility and host cell invasion of apicomplexan parasites.

Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen