Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Semantic multi-classifier systems for the analysis of gene expression profiles

Lausser, Ludwig; Schmid, Florian; Platzer, Matthias; Sillanpää, Mikko J.; Kestler, Hans A. (2016-04-20)

 
Avaa tiedosto
nbnfi-fe2018053125065.pdf (292.1Kt)
nbnfi-fe2018053125065_meta.xml (33.77Kt)
nbnfi-fe2018053125065_solr.xml (32.33Kt)
Lataukset: 

URL:
https://doi.org/10.5445/KSP/1000058747/09

Lausser, Ludwig
Schmid, Florian
Platzer, Matthias
Sillanpää, Mikko J.
Kestler, Hans A.
KIT Scientific Publishing
20.04.2016

Lausser, Ludwig, Schmid, Florian, Platzer, Matthias, Sillanpää, Mikko J. and Kestler, Hans A. (2016) Semantic multi-classifier systems for the analysis of gene expression profiles. Archives of Data Science, Series A 1(1), p. 157-176.DOI:10.5445/KSP/1000058747/09

https://rightsstatements.org/vocab/InC/1.0/
This document is licensed under the Creative Commons Attribution-Share Alike 3.0 DE License (CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.5445/KSP/1000058747/09
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2018053125065
Tiivistelmä

Abstract

The analysis of biomolecular data from high-throughput screens is typically characterized by the high dimensionality of the measured profiles. Development of diagnostic tools for this kind of data, such as gene expression profiles, is often coupled to an interest of users in obtaining interpretable and low-dimensional classification models; as this facilitates the generation of biological hypotheses on possible causes of a categorization. Purely data driven classification models are limited in this regard. These models only allow for interpreting the data in terms of marker combinations, often gene expression levels, and rarely bridge the gap to higher-level explanations such as molecular signaling pathways.

Here, we incorporate into the classification process, additionally to the expression profile data, different data sources that functionally organize these individual gene expression measurements into groups. The members of sucha group of measurements share a common property or characterize a more abstract biological concept. These feature subgroups are then used for the generation of individual classifiers. From the set of these classifiers, subsets are combined to a multi-classifier system. Analysing which individual classifiers, and thus which biological concepts such as pathways or ontology terms, are important for classification, make it possible to generate hypotheses about the distinguishing characteristics of the classes on a functional level.

Kokoelmat
  • Avoin saatavuus [37647]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen