Miniaturized pulsed laser source for time-domain diffuse optics routes to wearable devices
Di Sieno, Laura; Nissinen, Jan; Hallman, Lauri; Martinenghi, Edoardo; Contini, Davide; Pifferi, Antonio; Kostamovaara, Juha; Dalla Mora, Alberto (2017-08-19)
Laura Di Sieno, Jan Nissinen, Lauri Hallman, Edoardo Martinenghi, Davide Contini, Antonio Pifferi, Juha Kostamovaara, Alberto D. Mora, "Miniaturized pulsed laser source for time-domain diffuse optics routes to wearable devices," Journal of Biomedical Optics 22(8), 085004 (19 August 2017). http://dx.doi.org/10.1117/1.JBO.22.8.085004
© The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
https://creativecommons.org/licenses/by/3.0/
https://urn.fi/URN:NBN:fi-fe201801111231
Tiivistelmä
Abstract
We validate a miniaturized pulsed laser source for use in time-domain (TD) diffuse optics, following rigorous and shared protocols for performance assessment of this class of devices. This compact source (12×6 mm²) has been previously developed for range finding applications and is able to provide short, high energy (∼100 ps, ∼0.5 nJ) optical pulses at up to 1 MHz repetition rate. Here, we start with a basic level laser characterization with an analysis of suitability of this laser for the diffuse optics application. Then, we present a TD optical system using this source and its performances in both recovering optical properties of tissue-mimicking homogeneous phantoms and in detecting localized absorption perturbations. Finally, as a proof of concept of in vivo application, we demonstrate that the system is able to detect hemodynamic changes occurring in the arm of healthy volunteers during a venous occlusion. Squeezing the laser source in a small footprint removes a key technological bottleneck that has hampered so far the realization of a miniaturized TD diffuse optics system, able to compete with already assessed continuous-wave devices in terms of size and cost, but with wider performance potentialities, as demonstrated by research over the last two decades.
Kokoelmat
- Avoin saatavuus [29998]