Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the use of URLs and hashtags in age prediction of Twitter users

Pandya, Abhinay; Oussalah, Mourad; Monachesi, Paola; Kostakos, Panos; Lovén, Lauri (2018-08-06)

 
Avaa tiedosto
nbnfi-fe2018112849416.pdf (390.1Kt)
nbnfi-fe2018112849416_meta.xml (36.96Kt)
nbnfi-fe2018112849416_solr.xml (32.12Kt)
Lataukset: 

URL:
https://doi.org/10.1109/IRI.2018.00017

Pandya, Abhinay
Oussalah, Mourad
Monachesi, Paola
Kostakos, Panos
Lovén, Lauri
Institute of Electrical and Electronics Engineers
06.08.2018

A. Pandya, M. Oussalah, P. Monachesi, P. Kostakos and L. Lovén, "On the Use of URLs and Hashtags in Age Prediction of Twitter Users," 2018 IEEE International Conference on Information Reuse and Integration (IRI), Salt Lake City, UT, 2018, pp. 62-69. doi: 10.1109/IRI.2018.00017

https://rightsstatements.org/vocab/InC/1.0/
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/IRI.2018.00017
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2018112849416
Tiivistelmä

Abstract

Social media data represent an important resource for behavioral analysis of the ageing population. This paper addresses the problem of age prediction from Twitter dataset, where the prediction issue is viewed as a classification task. For this purpose, an innovative model based on Convolutional Neural Network is devised. To this end, we rely on language-related features and social media specific metadata. More specifically, we introduce two features that have not been previously considered in the literature: the content of URLs and hashtags appearing in tweets. We also employ distributed representations of words and phrases present in tweets, hashtags and URLs, pre-trained on appropriate corpora in order to exploit their semantic information in age prediction. We show that our CNN-based classifier, when compared with an SVM baseline model, yields an improvement of 12.3% and 6.6% in the micro-averaged F1 score on the Dutch and English datasets, respectively.

Kokoelmat
  • Avoin saatavuus [38821]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen