Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Wireless resource scheduling in virtualized radio access networks using stochastic learning

Chen, Xianfu; Han, Zhu; Zhang, Honggang; Xue, Guoliang; Xiao, Yong; Bennis, Mehdi (2017-08-22)

 
Avaa tiedosto
nbnfi-fe2018080833508.pdf (1.121Mt)
nbnfi-fe2018080833508_meta.xml (35.65Kt)
nbnfi-fe2018080833508_solr.xml (40.16Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TMC.2017.2742949

Chen, Xianfu
Han, Zhu
Zhang, Honggang
Xue, Guoliang
Xiao, Yong
Bennis, Mehdi
Institute of Electrical and Electronics Engineers
22.08.2017

X. Chen, Z. Han, H. Zhang, G. Xue, Y. Xiao and M. Bennis, "Wireless Resource Scheduling in Virtualized Radio Access Networks Using Stochastic Learning," in IEEE Transactions on Mobile Computing, vol. 17, no. 4, pp. 961-974, 1 April 2018. doi: 10.1109/TMC.2017.2742949

https://rightsstatements.org/vocab/InC/1.0/
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TMC.2017.2742949
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2018080833508
Tiivistelmä

Abstract

How to allocate the limited wireless resource in dense radio access networks (RANs) remains challenging. By leveraging a software-defined control plane, the independent base stations (BSs) are virtualized as a centralized network controller (CNC). Such virtualization decouples the CNC from the wireless service providers (WSPs). We investigate a virtualized RAN, where the CNC auctions channels at the beginning of scheduling slots to the mobile terminals (MTs) based on bids from their subscribing WSPs. Each WSP aims at maximizing the expected long-term payoff from bidding channels to satisfy the MTs for transmitting packets. We formulate the problem as a stochastic game, where the channel auction and packet scheduling decisions of a WSP depend on the state of network and the control policies of its competitors. To approach the equilibrium solution, an abstract stochastic game is proposed with bounded regret. The decision making process of each WSP is modeled as a Markov decision process (MDP). To address the signalling overhead and computational complexity issues, we decompose the MDP into a series of single-agent MDPs with reduced state spaces, and derive an online localized algorithm to learn the state value functions. Our results show significant performance improvements in terms of per-MT average utility.

Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen