Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

A directed information learning framework for event-driven M2M traffic prediction

Ali, Samad; Saad, Walid; Rajatheva, Nandana (2018-08-31)

 
Avaa tiedosto
nbnfi-fe2018122051408.pdf (198.1Kt)
nbnfi-fe2018122051408_meta.xml (30.50Kt)
nbnfi-fe2018122051408_solr.xml (30.79Kt)
Lataukset: 

URL:
https://doi.org/10.1109/LCOMM.2018.2868072

Ali, Samad
Saad, Walid
Rajatheva, Nandana
Institute of Electrical and Electronics Engineers
31.08.2018

S. Ali, W. Saad and N. Rajatheva, "A Directed Information Learning Framework for Event-Driven M2M Traffic Prediction," in IEEE Communications Letters, vol. 22, no. 11, pp. 2378-2381, Nov. 2018. doi: 10.1109/LCOMM.2018.2868072

https://rightsstatements.org/vocab/InC/1.0/
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/LCOMM.2018.2868072
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2018122051408
Tiivistelmä

Abstract

Burst of transmissions stemming from event-driven traffic in machine-type communication (MTC) can lead to congestion of random access resources, packet collisions, and long delays. In this letter, a directed information (DI) learning framework is proposed to predict the source traffic in event-driven MTC. By capturing the history of transmissions during past events by a sequence of binary random variables, the DI between different machine-type devices (MTDs) is calculated and used for predicting the set of possible MTDs that are likely to report an event. Analytical and simulation results show that the proposed DI learning method can reveal the correlation between transmission from different MTDs that report the same event, and the order in which they transmit their data. The proposed algorithm and the presented results show that DI can be used to implement effective predictive resource allocation for event-driven MTC.

Kokoelmat
  • Avoin saatavuus [38618]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen