Rate-distortion performance of lossy compressed sensing of sparse sources
Leinonen, Markus; Codreanu, Marian; Juntti, Markku; Kramer , Gerhard (2018-05-08)
M. Leinonen, M. Codreanu, M. Juntti and G. Kramer, "Rate-Distortion Performance of Lossy Compressed Sensing of Sparse Sources," in IEEE Transactions on Communications, vol. 66, no. 10, pp. 4498-4512, Oct. 2018. doi: 10.1109/TCOMM.2018.2834349
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
https://urn.fi/URN:NBN:fi-fe2018112348888
Tiivistelmä
Abstract
We investigate lossy compressed sensing (CS) of a hidden, or remote, source, where a sensor observes a sparse information source indirectly. The compressed noisy measurements are communicated to the decoder for signal reconstruction with the aim to minimize the mean square error distortion. An analytically tractable lower bound to the remote rate-distortion function (RDF), i.e., the conditional remote RDF, is derived by providing support side information to the encoder and decoder. For this setup, the best encoder separates into an estimation step and a transmission step. A variant of the Blahut-Arimoto algorithm is developed to numerically approximate the remote RDF. Furthermore, a novel entropy coding based quantized CS method is proposed. Numerical results illustrate the main rate-distortion characteristics of the lossy CS, and compare the performance of practical quantized CS methods against the proposed limits.
Kokoelmat
- Avoin saatavuus [30006]