Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fine-grained image classification with Gaussian mixture layer

Liang, Jingyun; Guo, Jinlin; Liu, Xin; Lao, Songyang (2018-09-20)

 
Avaa tiedosto
nbnfi-fe2018112048690.pdf (1.793Mt)
nbnfi-fe2018112048690_meta.xml (32.87Kt)
nbnfi-fe2018112048690_solr.xml (33.67Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ACCESS.2018.2871621

Liang, Jingyun
Guo, Jinlin
Liu, Xin
Lao, Songyang
Institute of Electrical and Electronics Engineers
20.09.2018

J. Liang, J. Guo, X. Liu and S. Lao, "Fine-Grained Image Classification With Gaussian Mixture Layer," in IEEE Access, vol. 6, pp. 53356-53367, 2018. doi: 10.1109/ACCESS.2018.2871621

https://rightsstatements.org/vocab/InC/1.0/
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ACCESS.2018.2871621
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2018112048690
Tiivistelmä

Abstract

Fine-grained image classification aims at recognizing different subordinates in one basic-level category, for example, distinguishing species of birds. Compared with basic-level classification, it has both low inter-class and high intra-class variances. Therefore, utilization of discriminative parts is crucial for fine-grained classification. In this paper, we propose a Gaussian mixture model, which fuses part features by Gaussian mixture layer. More specifically, it first generates a set of part proposals by selective search. Then, we extract image feature maps from mid-layers of convolutional neural networks. Feature maps and part proposals are used for calculating part features via spatial pyramid pooling. Next, Gaussian mixture layer treats part features as data points and uses several Gaussian components to model their distribution. It finds clusters for input and generates output features based on combination of cluster center. Finally, the output feature can represent the whole image and is used for classification. Training process of the model consists of two loops. The outer loop is the optimization of the whole network, and the inner loop is about the EM algorithm used in Gaussian mixture layer. Experiments demonstrate higher or similar performance on four fine-grained data sets compared with the state-of-the-arts. More discussions on Gaussian mixture layer are also provided.

Kokoelmat
  • Avoin saatavuus [38670]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen