Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Regret based learning for UAV assisted LTE-U/WiFi public safety networks

Athukoralage, Dasun; Guvenc, Ismail; Saad, Walid; Bennis, Mehdi (2017-02-06)

 
Avaa tiedosto
nbnfi-fe2018080733450.pdf (463.6Kt)
nbnfi-fe2018080733450_meta.xml (30.27Kt)
nbnfi-fe2018080733450_solr.xml (33.14Kt)
Lataukset: 

URL:
https://doi.org/10.1109/GLOCOM.2016.7842208

Athukoralage, Dasun
Guvenc, Ismail
Saad, Walid
Bennis, Mehdi
Institute of Electrical and Electronics Engineers
06.02.2017

D. Athukoralage, I. Guvenc, W. Saad and M. Bennis, "Regret Based Learning for UAV Assisted LTE-U/WiFi Public Safety Networks," 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, 2016, pp. 1-7. doi: 10.1109/GLOCOM.2016.7842208

https://rightsstatements.org/vocab/InC/1.0/
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/GLOCOM.2016.7842208
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2018080733450
Tiivistelmä

Abstract

Broadband wireless communication is of critical importance during public safety scenarios as it facilitates situational awareness capabilities for first responders and victims. In this paper, the use of LTE-Unlicensed (LTE-U) technology for unmanned aerial base stations (UABSs) is investigated as an effective approach to enhance the achievable broadband throughput during emergency situations by utilizing the unlicensed spectrum. In particular, we develop a game theoretic framework for load balancing between LTE-U UABSs and WiFi access points (APs), based on the users’ link qualities as well as the loads at the UABSs and the ground APs. To solve this game, we propose a regret-based learning (RBL) dynamic duty cycle selection (DDCS) method for configuring the transmission gaps in LTE-U UABSs, to ensure a satisfactory throughput for all users. Simulation results show that the proposed RBL-DDCS yields an improvement of 32% over fixed duty cycle LTE-U transmission, and an improvement of 10% over Q-learning based DDCS.

Kokoelmat
  • Avoin saatavuus [37708]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen