Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Background subtraction using spatio-temporal group sparsity recovery

Liu, Xin; Yao, Jiawen; Hong, Xiaopeng; Huang, Xiaohua; Zhou, Ziheng; Qi, Chun; Zhao, Guoying (2017-04-25)

 
Avaa tiedosto
nbnfi-fe2018102638831.pdf (4.365Mt)
nbnfi-fe2018102638831_meta.xml (43.86Kt)
nbnfi-fe2018102638831_solr.xml (40.14Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TCSVT.2017.2697972

Liu, Xin
Yao, Jiawen
Hong, Xiaopeng
Huang, Xiaohua
Zhou, Ziheng
Qi, Chun
Zhao, Guoying
Institute of Electrical and Electronics Engineers
25.04.2017

Liu, X., Yao, J., Hong, X., Huang, X., Zhou, Z., Qi, C., Zhao, G. (2018) Background Subtraction Using Spatio-Temporal Group Sparsity Recovery. IEEE Transactions on Circuits and Systems for Video Technology, 28 (8), 1737-1751. doi:10.1109/TCSVT.2017.2697972

https://rightsstatements.org/vocab/InC/1.0/
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TCSVT.2017.2697972
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2018102638831
Tiivistelmä

Abstract

Background subtraction is a key step in a wide spectrum of video applications, such as object tracking and human behavior analysis. Compressive sensing-based methods, which make little specific assumptions about the background, have recently attracted wide attention in background subtraction. Within the framework of compressive sensing, background subtraction is solved as a decomposition and optimization problem, where the foreground is typically modeled as pixel-wised sparse outliers. However, in real videos, foreground pixels are often not randomly distributed, but instead, group clustered. Moreover, due to costly computational expenses, most compressive sensing-based methods are unable to process frames online. In this paper, we take into account the group properties of foreground signals in both spatial and temporal domains, and propose a greedy pursuit-based method called spatio-temporal group sparsity recovery, which prunes data residues in an iterative process, according to both sparsity and group clustering priors, rather than merely sparsity. Furthermore, a random strategy for background dictionary learning is used to handle complex background variations, while foreground-free training is not required. Finally, we propose a two-pass framework to achieve online processing. The proposed method is validated on multiple challenging video sequences. Experiments demonstrate that our approach effectively works on a wide range of complex scenarios and achieves a state-of-the-art performance with far fewer computations.

Kokoelmat
  • Avoin saatavuus [37647]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen