Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Models for supercritical motion in a superfluid Fermi liquid

Kuorelahti, J. A.; Laine, S. M.; Thuneberg, E. V. (2018-10-16)

 
Avaa tiedosto
nbnfi-fe2018112148794.pdf (2.010Mt)
nbnfi-fe2018112148794_meta.xml (30.95Kt)
nbnfi-fe2018112148794_solr.xml (33.06Kt)
Lataukset: 

URL:
https://doi.org/10.1103/PhysRevB.98.144512

Kuorelahti, J. A.
Laine, S. M.
Thuneberg, E. V.
American Physical Society
16.10.2018

Kuorelahti, J., Laine, S., Thuneberg, E. (2018) Models for supercritical motion in a superfluid Fermi liquid. Physical Review B, 98 (14), 144512. doi:10.1103/PhysRevB.98.144512

https://rightsstatements.org/vocab/InC/1.0/
© 2018 American Physical Society. Published in this repository with the kind permission of the publisher.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1103/PhysRevB.98.144512
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2018112148794
Tiivistelmä

Abstract

We study the drag force on objects moving in a Fermi superfluid at velocities on the order of the Landau velocity vL. The expectation has been that vL is the critical velocity beyond which the drag force starts to increase toward its normal-state value. This expectation is challenged by a recent experiment measuring the heat generated by a uniformly moving wire immersed in superfluid ³He. We introduce the basis for the calculation of the drag force on a macroscopic object using the Fermi-liquid theory of superfluidity. As a technical tool in the calculations, we propose a boundary condition that describes diffuse reflection of quasiparticles from a surface on a scale that is larger than the superfluid coherence length. We calculate the drag force on steadily moving objects of different sizes. For an object that is small compared to the coherence length, we find a drag force that is in accordance with the expectation. For a macroscopic object, we need to take into account the spatially varying flow field around the object. At low velocities, this arises from ideal flow of the superfluid. At higher velocities, the flow field is modified by excitations that are created when the flow velocity locally exceeds vL. The flow field causes Andreev reflection of quasiparticles and thus leads to change in the drag force. We calculate multiple limiting cases for a cylinder-shaped object. In the absence of quasiparticle-quasiparticle collisions, we find that the critical velocity is larger than vL and the drag force (per cross-sectional area) at 2vL is reduced by an order of magnitude compared to the case of a small object. In a collision-dominated limit, the flow shows signs of instability at a velocity belowvL.

Kokoelmat
  • Avoin saatavuus [38618]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen