Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

A scale space approach for estimating the characteristic feature sizes in hierarchical signals

Ruha (née Pasanen), Leena; Aakala, Tuomas; Holmström, Lasse (2018-08-13)

 
Avaa tiedosto
nbnfi-fe2018082834185.pdf (591.0Kt)
nbnfi-fe2018082834185_meta.xml (32.31Kt)
nbnfi-fe2018082834185_solr.xml (30.47Kt)
Lataukset: 

URL:
https://doi.org/10.1002/sta4.195

Ruha (née Pasanen), Leena
Aakala, Tuomas
Holmström, Lasse
John Wiley & Sons
13.08.2018

Pasanen, L., Aakala, T., and Holmström, L. (2018) A scale space approach for estimating the characteristic feature sizes in hierarchical signals. Stat, 7: e195, https://doi.org/10.1002/sta4.195

https://rightsstatements.org/vocab/InC/1.0/
© 2018 John Wiley & Sons, Ltd. "This is the peer reviewed version of the following article: Pasanen, L., Aakala, T., and Holmström, L. (2018) A scale space approach for estimating the characteristic feature sizes in hierarchical signals. Stat, 7: e195, https://doi.org/10.1002/sta4.195, which has been published in final form at https://doi.org/10.1002/sta4.195. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1002/sta4.195
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2018082834185
Tiivistelmä

Abstract

The temporal and spatial data analysed in, for example, ecology or climatology, are often hierarchically structured, carrying information in different scales. An important goal of data analysis is then to decompose the observed signal into distinctive hierarchical levels and to determine the size of the features that each level represents. Using differences of smooths, scale space multiresolution analysis decomposes a signal into additive components associated with different levels of scales present in the data. The smoothing levels used to compute the differences are determined by the local minima of the norm of the so‐called scale‐derivative of the signal. While this procedure accomplishes the first goal, the hierarchical decomposition of the signal, it does not achieve the second goal, the determination of the actual size of the features corresponding to each hierarchical level. Here, we show that the maximum of the scale‐derivative norm of an extracted hierarchical component can be used to estimate its characteristic feature size. The feasibility of the method is demonstrated using an artificial image and a time series of a drought index, based on climate reconstructions from long tree ring chronologies.

Kokoelmat
  • Avoin saatavuus [38520]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen