Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Study of TEC fluctuation via stochasticmodels and Bayesian inversion

Bires, Abiyot; Roininen, Lassi; Damtie, Baylie; Nigussie, Melessew; Vanhamäki, Heikki (2016-10-28)

 
Avaa tiedosto
nbnfi-fe2018050723596.pdf (1.100Mt)
nbnfi-fe2018050723596_meta.xml (38.37Kt)
nbnfi-fe2018050723596_solr.xml (36.69Kt)
Lataukset: 

URL:
https://doi.org/10.1002/2016RS005959

Bires, Abiyot
Roininen, Lassi
Damtie, Baylie
Nigussie, Melessew
Vanhamäki, Heikki
American Geophysical Union
28.10.2016

Bires, A., Roininen, L., Damtie, B., Nigussie, M., Vanhamäki, H. (2016) Study of TEC fluctuation via stochastic models and Bayesian inversion. Radio Science, 51 (11), 1772-1782. doi:10.1002/2016RS005959

https://rightsstatements.org/vocab/InC/1.0/
© 2016. American Geophysical Union. Published in this repository with the kind permission of the publisher.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1002/2016RS005959
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2018050723596
Tiivistelmä

Abstract

We propose stochastic processes to be used to model the total electron content (TEC) observation. Based on this, we model the rate of change of TEC (ROT) variation during ionospheric quiet conditions with stationary processes. During ionospheric disturbed conditions, for example, when irregularity in ionospheric electron density distribution occurs, stationarity assumption over long time periods is no longer valid. In these cases, we make the parameter estimation for short time scales, during which we can assume stationarity. We show the relationship between the new method and commonly used TEC characterization parameters ROT and the ROT Index (ROTI). We construct our parametric model within the framework of Bayesian statistical inverse problems and hence give the solution as an a posteriori probability distribution. Bayesian framework allows us to model measurement errors systematically. Similarly, we mitigate variation of TEC due to factors which are not of ionospheric origin, like due to the motion of satellites relative to the receiver, by incorporating a priori knowledge in the Bayesian model. In practical computations, we draw the so-called maximum a posteriori estimates, which are our ROT and ROTI estimates, from the posterior distribution. Because the algorithm allows to estimate ROTI at each observation time, the estimator does not depend on the period of time for ROTI computation. We verify the method by analyzing TEC data recorded by GPS receiver located in Ethiopia (11.6∘N, 37.4∘E). The results indicate that the TEC fluctuations caused by the ionospheric irregularity can be effectively detected and quantified from the estimated ROT and ROTI values.

Kokoelmat
  • Avoin saatavuus [38358]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen