Aging and serum exomiR content in women-effects of estrogenic hormone replacement therapy
Kangas, Reeta; Törmäkangas, Timo; Fey, Vidal; Pursiheimo, Juha; Miinalainen, Ilkka; Alen, Markku; Kaprio, Jaakko; Sipilä, Sarianna; Säämänen, Anna-Marja; Kovanen, Vuokko; Laakkonen, Eija K. (2017-03-14)
Kangas, R. et al. Aging and serum exomiR content in women-effects of estrogenic hormone replacement therapy. Sci. Rep. 7, 42702; doi: 10.1038/srep42702 (2017)
© The Author(s) 2017. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://urn.fi/URN:NBN:fi-fe201704035935
Tiivistelmä
Abstract
Exosomes participate in intercellular messaging by transporting bioactive lipid-, protein- and RNA-molecules and -complexes. The contents of the exosomes reflect the physiological status of an individual making exosomes promising targets for biomarker analyses. In the present study we extracted exosome microRNAs (exomiRs) from serum samples of premenopausal women (n = 8) and monozygotic postmenopausal twins (n = 10 female pairs), discordant for the use of estrogenic hormone replacement therapy (HRT), in order to see whether the age or/and the use of HRT associates with exomiR content. A total of 241 exomiRs were detected by next generation sequencing, 10 showing age, 14 HRT and 10 age +HRT -related differences. When comparing the groups, differentially expressed miRs were predicted to affect cell proliferation processes showing inactivation with younger age and HRT usage. MiR-106-5p, -148a-3p, -27-3p, -126-5p, -28-3p and -30a-5p were significantly associated with serum 17β-estradiol. MiRs formed two hierarchical clusters being indicative of positive or negative health outcomes involving associations with body composition, serum 17β-estradiol, fat-, glucose- and inflammatory markers. Circulating exomiR clusters, obtained by NGS, could be used as indicators of metabolic and inflammatory status affected by hormonal changes at menopause. Furthermore, the individual effects of HRT-usage could be evaluated based on the serum exomiR signature.
Kokoelmat
- Avoin saatavuus [34150]