Hydrophobic, superabsorbing aerogels from choline chloride-based deep eutectic solvent pretreated and silylated cellulose nanofibrils for selective oil removal
Laitinen, Ossi; Suopajärvi, Terhi; Österberg, Monika; Liimatainen, Henrikki (2017-07-06)
Ossi Laitinen, Terhi Suopajärvi, Monika Österberg, and Henrikki Liimatainen. Hydrophobic, Superabsorbing Aerogels from Choline Chloride-Based Deep Eutectic Solvent Pretreated and Silylated Cellulose Nanofibrils for Selective Oil Removal. ACS Applied Materials & Interfaces 2017 9 (29), 25029-25037, DOI: 10.1021/acsami.7b06304
This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Materials & Interfaces, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/acsami.7b06304
https://rightsstatements.org/vocab/InC/1.0/
https://urn.fi/URN:NBN:fi-fe201710038871
Tiivistelmä
Abstract
Superabsorbents are highly appealing materials for use in cleaning up oil and chemical spills. However, the development of a low-cost, highly efficient superabsorbent remains a major challenge. This paper demonstrates a straightforward method of producing a cellulose nanofibril aerogel that is low-cost, ultralight, highly porous, hydrophobic, and reusable superabsorbing cellulose nanofibril aerogel from recycled waste fibers using a simple, environmentally friendly nanofibrillation treatment involving deep eutectic solvent and freeze-drying. Nanofibrillation and hydrophobic modification (silylation) of waste cellulose fibers resulted in nanofibril sponges with ultralow density (0.0029 g/cm³) and high porosity (up to 99.81%) after freeze-drying. These sponges exhibited excellent absorption performances for various oils and organic solvents and were reusable. In particular, the nanofibril aerogels showed selectivity in absorbing marine diesel oil from an oil–water mixture and possessed ultrahigh absorption capacities of up to 142.9 g/g, much higher than those of the commercial absorbent materials (i.e., polypropylene-based material) (8.1–24.6 g/g) that were used as references. The absorbed oil could easily be recovered by means of simple mechanical squeezing. In addition, the nanofibril sponges exhibited excellent reusability, maintaining a high capacity to absorb diesel oil for at least 30 cycles at 71.4–81.0% of capacity compared to a fresh absorbent. The above-mentioned advantages make cellulose nanofibril superabsorbents created from recycled waste cellulose fibers promising material for cleaning oil and chemical spills.
Kokoelmat
- Avoin saatavuus [34343]