Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Personal models for eHealth : improving user-dependent human activity recognition models using noise injection

Siirtola, Pekka; Koskimäki, Heli; Röning, Juha (2017-02-13)

 
Avaa tiedosto
nbnfi-fe2016122031630.pdf (152.4Kt)
nbnfi-fe2016122031630_meta.xml (33.92Kt)
nbnfi-fe2016122031630_solr.xml (31.38Kt)
Lataukset: 

URL:
https://doi.org/10.1109/SSCI.2016.7849944

Siirtola, Pekka
Koskimäki, Heli
Röning, Juha
Institute of Electrical and Electronics Engineers
13.02.2017

P. Siirtola, H. Koskimäki and J. Röning, "Personal models for eHealth - improving user-dependent human activity recognition models using noise injection," 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, 2016, pp. 1-7. doi: 10.1109/SSCI.2016.7849944

https://rightsstatements.org/vocab/InC/1.0/
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/SSCI.2016.7849944
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2016122031630
Tiivistelmä

Abstract

In this paper, a noise injection method to improve personal recognition models is presented. The idea of the method is to build more general recognition models for eHealth using a small original data set and by expanding the area covered by training data using noise injection. This way, it is possible to train models that are less vulnerable to changing conditions, and thus more accurate, but still the data gathering phase can be non-burdensome. The proposed method was tested using two classifiers (linear discriminant analysis and quadratic discriminant analysis) and three human activity recognition data sets collected using inertial sensors of a smartphone. Two of these data sets are open data sets. The results show that noise injection improves the true positive recognition rates. With first data set the improvement varies from 1.3 to 2.0 percentage units, with second from 1.4 to 4.5 percentage units, and with third the highest improvement was 2.5 percentage units. Moreover, the results show that the method improves precision and reduces false positive rates. In addition, experiments were made using different training set sizes to show that the improvement in true positive rate is bigger if the original training data set is small. In this study, the method is experimented using human activity data sets but it is not limited to this application area and can be used with any time series data.

Kokoelmat
  • Avoin saatavuus [38697]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen