Fractal percolation, porosity, and dimension
Chen, Changhao; Ojala, Tuomo; Rossi, Eino; Suomala, Ville (2016-04-28)
Chen, Changhao
Ojala, Tuomo
Rossi, Eino
Suomala, Ville
Springer Nature
28.04.2016
Chen, C., Ojala, T., Rossi, E. et al. J Theor Probab (2017) 30: 1471. https://doi.org/10.1007/s10959-016-0680-x
https://rightsstatements.org/vocab/InC/1.0/
© Springer Science+Business Media New York 2016. This is a pre-print of an article published in Journal of Theoretical Probability. The final authenticated version is available online at: https://doi.org/10.1007/s10959-016-0680-x
https://rightsstatements.org/vocab/InC/1.0/
© Springer Science+Business Media New York 2016. This is a pre-print of an article published in Journal of Theoretical Probability. The final authenticated version is available online at: https://doi.org/10.1007/s10959-016-0680-x
https://rightsstatements.org/vocab/InC/1.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2017112855094
https://urn.fi/URN:NBN:fi-fe2017112855094
Tiivistelmä
Abstract
We study the porosity properties of fractal percolation sets E ⊂ Rd. Among other things, for all 0 < ɛ < ½, we obtain dimension bounds for the set of exceptional points where the upper porosity of E is less than ½ ‒ ɛ, or the lower porosity is larger than ɛ. Our method works also for inhomogeneous fractal percolation and more general random sets whose offspring distribution gives rise to a Galton–Watson process.
Kokoelmat
- Avoin saatavuus [29905]