Robust hierarchical 3D carbon foam electrode for efficient water electrolysis
Pham, Tung Ngoc; Sharifi, Tiva; Sandström, Robin; Siljebo, William; Shchukarev, Andrey; Kordas, Krisztian; Wågberg, Thomas; Mikkola, Jyri-Pekka (2017-07-21)
Pham, T., Sharifi, T., Sandström, R., Siljebo, W., Shchukarev, A., Kordas, K., Wågberg, T., Mikkola, J. (2017) Robust hierarchical 3D carbon foam electrode for efficient water electrolysis. Scientific Reports, 7 (1), doi:10.1038/s41598-017-05215-1
© The Author(s) 2017. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
https://urn.fi/URN:NBN:fi-fe201709228691
Tiivistelmä
Abstract
Herein we report a 3D heterostructure comprising a hierarchical macroporous carbon foam that incorporates mesoporous carbon nanotubes decorated with cobalt oxide nanoparticles as an unique and highly efficient electrode material for the oxygen evolution reaction (OER) in electrocatalytic water splitting. The best performing electrode material showed high stability after 10 h, at constant potential of 1.7 V vs. RHE (reversible hydrogen electrode) in a 0.1 M KOH solution and high electrocatalytic activity in OER with low overpotential (0.38 V vs RHE at 10 mA cm⁻²). The excellent electrocatalytic performance of the electrode is rationalized by the overall 3D macroporous structure and with the firmly integrated CNTs directly grown on the foam, resulting in a large specific surface area, good electrical conductivity, as well as an efficient electrolyte transport into the whole electrode matrix concurrent with an ability to quickly dispose oxygen bubbles into the electrolyte. The eminent properties of the three-dimensional structured carbon matrix, which can be synthesized through a simple, scalable and cost effective pyrolysis process show that it has potential to be implemented in large-scale water electrolysis systems.
Kokoelmat
- Avoin saatavuus [34351]