Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Gibbs energy minimization approach for modeling of chemical reactions in a basic oxygen furnace

Kruskopf, Ari; Visuri, Ville-Valtteri (2017-08-31)

 
Avaa tiedosto
nbnfi-fe201709118556.pdf (4.543Mt)
nbnfi-fe201709118556_meta.xml (29.12Kt)
nbnfi-fe201709118556_solr.xml (30.99Kt)
Lataukset: 

URL:
https://doi.org/10.1007/s11663-017-1074-x

Kruskopf, Ari
Visuri, Ville-Valtteri
Springer Nature
31.08.2017

Kruskopf, A. & Visuri, VV. Metall and Materi Trans B (2017) 48: 3281. https://doi.org/10.1007/s11663-017-1074-x

https://rightsstatements.org/vocab/InC/1.0/
© The Minerals, Metals & Materials Society and ASM International 2017. The final publication is available at Springer via https://doi.org/10.1007/s11663-017-1074-x.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1007/s11663-017-1074-x
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe201709118556
Tiivistelmä

Abstract

In modern steelmaking, the decarburization of hot metal is converted into steel primarily in converter processes, such as the basic oxygen furnace. The objective of this work was to develop a new mathematical model for top blown steel converter, which accounts for the complex reaction equilibria in the impact zone, also known as the hot spot, as well as the associated mass and heat transport. An in-house computer code of the model has been developed in Matlab. The main assumption of the model is that all reactions take place in a specified reaction zone. The mass transfer between the reaction volume, bulk slag, and metal determine the reaction rates for the species. The thermodynamic equilibrium is calculated using the partitioning of Gibbs energy (PGE) method. The activity model for the liquid metal is the unified interaction parameter model and for the liquid slag the modified quasichemical model (MQM). The MQM was validated by calculating iso-activity lines for the liquid slag components. The PGE method together with the MQM was validated by calculating liquidus lines for solid components. The results were compared with measurements from literature. The full chemical reaction model was validated by comparing the metal and slag compositions to measurements from industrial scale converter. The predictions were found to be in good agreement with the measured values. Furthermore, the accuracy of the model was found to compare favorably with the models proposed in the literature. The real-time capability of the proposed model was confirmed in test calculations.

Kokoelmat
  • Avoin saatavuus [38618]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen