THZ RF measurement techniques
Mollah, Md Showkat Ali (2021-06-16)
Mollah, Md Showkat Ali
M. Mollah
16.06.2021
© 2021 Md Showkat Ali Mollah. Tämä Kohde on tekijänoikeuden ja/tai lähioikeuksien suojaama. Voit käyttää Kohdetta käyttöösi sovellettavan tekijänoikeutta ja lähioikeuksia koskevan lainsäädännön sallimilla tavoilla. Muunlaista käyttöä varten tarvitset oikeudenhaltijoiden luvan.
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202106198602
https://urn.fi/URN:NBN:fi:oulu-202106198602
Tiivistelmä
In this thesis, literature review on available methods, techniques and procedures for terahertz antenna measurement system and terahertz propagation measurement system are reported. The paper presented the terahertz frequency spectrum allocation by FCC, ITU, ETSI and its application in wireless communication system with advantage in obtaining terabits per second data rates. Terahertz antenna parameters are reported and measurement systems for measurement of these chapters are reviewed.
Literature of three papers on terahertz antenna measurement system with their respective measurement setup, calibration techniques and measurement procedures are reviewed. An automated antenna measurement system is reviewed with stochastic and systematic measurements and has achieved terahertz antenna s-parameter measurements in far field region at frequency range of 220 GHz to 330 GHz. Another measurement system with single port short-open-load (SOL) calibration technique is reviewed. In this measurement of s-parameter of terahertz antenna is carried out, using receiver horn placed on 3 D positioner, which records the AUT 3D radiation pattern. The third paper reviewed, is a reconfigurable terahertz antenna measurement system, with capabilities of working on large bandwidths, with small change in work bench instrumentation. This setup contains the multiplexing stages for terahertz frequency generation. Beam pattern measurements are conducted at 1.37 THz supporting the simulations and the system stability for reconfigurations.
In the later study, terahertz propagation parameters are studied and presented for review of available terahertz propagation measurement systems. Literature review of three papers describing different setup and procedures for terahertz propagation measurement system are reported. The first system with the setup to record path loss in LOS and NLOS links at 260 GHz to 400 GHz is presented. Propagation parameters containing reflections, shadowing is measured. LOS and NLOS channel capacity models are obtained based on data rates in terabits per second for using above 5G wireless communication systems. Another system with office architecture, indoor LOS link, viable for indoor wireless communication applications is reported. Propagation parameters containing power density profile (PDP) are measured and validated for 140 GHz to 220 GHz. A measurement system which reports effect of atmospheric pressure, temperature and humidity is reported in the last. The setup used short, offset-short, load and thru (SOLT) technique for calibration and PDP propagation parameter is measured for 0.5 THz to 0.75 THz.
Terahertz antenna and wave propagation measurement system reviewed in the papers are vital for development of terahertz systems in wireless and mobile communication. Further the study can be extended for measurement of terahertz antennas and wave propagation parameters with models of use in wireless hand-held devices, connected devices, mobile backhaul system and more.
Literature of three papers on terahertz antenna measurement system with their respective measurement setup, calibration techniques and measurement procedures are reviewed. An automated antenna measurement system is reviewed with stochastic and systematic measurements and has achieved terahertz antenna s-parameter measurements in far field region at frequency range of 220 GHz to 330 GHz. Another measurement system with single port short-open-load (SOL) calibration technique is reviewed. In this measurement of s-parameter of terahertz antenna is carried out, using receiver horn placed on 3 D positioner, which records the AUT 3D radiation pattern. The third paper reviewed, is a reconfigurable terahertz antenna measurement system, with capabilities of working on large bandwidths, with small change in work bench instrumentation. This setup contains the multiplexing stages for terahertz frequency generation. Beam pattern measurements are conducted at 1.37 THz supporting the simulations and the system stability for reconfigurations.
In the later study, terahertz propagation parameters are studied and presented for review of available terahertz propagation measurement systems. Literature review of three papers describing different setup and procedures for terahertz propagation measurement system are reported. The first system with the setup to record path loss in LOS and NLOS links at 260 GHz to 400 GHz is presented. Propagation parameters containing reflections, shadowing is measured. LOS and NLOS channel capacity models are obtained based on data rates in terabits per second for using above 5G wireless communication systems. Another system with office architecture, indoor LOS link, viable for indoor wireless communication applications is reported. Propagation parameters containing power density profile (PDP) are measured and validated for 140 GHz to 220 GHz. A measurement system which reports effect of atmospheric pressure, temperature and humidity is reported in the last. The setup used short, offset-short, load and thru (SOLT) technique for calibration and PDP propagation parameter is measured for 0.5 THz to 0.75 THz.
Terahertz antenna and wave propagation measurement system reviewed in the papers are vital for development of terahertz systems in wireless and mobile communication. Further the study can be extended for measurement of terahertz antennas and wave propagation parameters with models of use in wireless hand-held devices, connected devices, mobile backhaul system and more.
Kokoelmat
- Avoin saatavuus [36660]