Forecasting wind energy for a data center
Rankinen, Riitta (2021-06-17)
Rankinen, Riitta
R. Rankinen
17.06.2021
© 2021 Riitta Rankinen. Tämä Kohde on tekijänoikeuden ja/tai lähioikeuksien suojaama. Voit käyttää Kohdetta käyttöösi sovellettavan tekijänoikeutta ja lähioikeuksia koskevan lainsäädännön sallimilla tavoilla. Muunlaista käyttöä varten tarvitset oikeudenhaltijoiden luvan.
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202106188578
https://urn.fi/URN:NBN:fi:oulu-202106188578
Tiivistelmä
Data centers are increasingly using renewables such as wind and solar energy. RISE’s ICE data center has already solar panels and is now studying impact of adding a wind turbine into their microgrid. In this thesis, a machine learning model was developed to forecast wind power production for the data center.
Data center in Luleå has several applications to utilize wind power forecasting. Renewable energy sources are intermittent, so accurate forecasting of output power reduces a need for additional balancing of energy and reserve power in an electricity grid. Renewable energy can be reserved from market for next hour or next day to maximize its use. Forecasting from 30 min to 6 hours ahead allows job scheduling to optimize usage of renewables and to reduce power consumption. Data center may target to minimize electricity cost or maximize usage of renewables for lower greenhouse gas emissions. Smart microgrid based on artificial intelligence is the way to implement the applications.
Two open data sets from India and Sweden have been used in the research. The data available supports choosing of a statistical model. Random forest regression was the model used in the research. Data from India enabled to develop a model for one wind turbine. Developed model forecasted output power well. Swedish data set is from EEM20 competition, it included total wind power production in Sweden and had to be applied to approximate production of one wind turbine in Luleå. To achieve the goal output power of Luleå price region was averaged, and location for the simulation was chosen to be near Luleå. As expected, the accuracy of forecasting with Swedish data was reasonable, but approximations done reduced it.
The developed model was applied to RISE’s ICE data center. Validation has been done, but final testing will take place in RISE’s simulation environment. In general, data from northern Sweden is not openly available for wind power forecasting. In addition, any scientific articles covering the geographical area were not found while working on literature review. The study with Swedish competition data gave understanding, which variables are significant in northern Sweden and about their relative importances. Wind gust is such a variable. Using two data sets from different geographical locations proved that climate has a major impact on performance of the trained model. Thus, it is reasonable to use the trained model in locations with similar weather conditions only. Datakeskukset käyttävät uusiutuvia energialähteitä yhä enemmän. Tällaisia lähteitä ovat mm. tuuli- ja aurinkoenergia. RISE:n ICE datakeskuksella Luulajassa on jo aurinkopaneelit käytössä, ja nyt tutkitaan tuulimyllyn lisäämisen vaikutusta mikroverkkoon. Tässä työssä kehitettiin koneoppimismalli tuulivoiman tuotannon ennustamiseksi datakeskusta varten.
Datakeskuksella on useita sovelluksia tuulienergian ennustamisen hyödyntämiseksi. Uusiutuvat energialähteet ovat luonteeltaan vaihtelevia, joten tuotetun tehon tarkka ennustaminen vähentää ylimääräisen säätämisen ja reservitehon tarvetta sähköverkossa yleensäkin. Datakeskus voi varata uusiutuvaa energiaa markkinoilta seuraavaksi tunniksi tai päiväksi uusiutuvan energian käytön maksimoimiseksi. Ennustaminen 30 minuutista 6 tuntiin etukäteen mahdollistaa työjonon aikatauluttamisen uusiutuvien käytön optimoimiseksi ja vähentää tehonkulutusta. Datakeskus voi pyrkiä minimoimaan sähkön käytön kustannuksia, tai pienentämään kasvihuonekaasujen päästöjä käyttämällä mahdollisimman paljon uusiutuvaa energiaa. Tekoälyyn perustuva älykäs mikroverkko on tapa toteuttaa edellä mainitut sovellukset.
Tutkimuksessa on käytetty kahta avointa tietoainestoa Intiasta ja Ruotsista. Saatavilla oleva data tukee tilastollisen ennustemallin valintaa. Tässä työssä käytettiin satunnaismetsämenetelmää. Intian dataa käytettiin mallin kehityksessä yhtä tuulimyllyä varten. Kehitetty malli ennusti tuotetun tehon hyvin. Ruotsalainen data perustuu EEM20-kilpailuun, jossa arvioitiin koko Ruotsin tuulivoiman tuotantoa. Sitä olikin sovellettava Luulajassa olevan yhden tuulimyllyn tuotannon arvioimiseksi. Luulajan hinta-alueen tuottama teho keskiarvoistettiin, ja ennustamista varten valittiin maantieteellinen paikka läheltä Luulajaa. Kuten oli odotettavissa, soveltamisessa tehdyt likiarvoistukset pienensivät ennustamisen tarkkuutta, jota voidaan kuitenkin pitää kohtuullisena.
Kehitettyä mallia sovellettiin RISE:n ICE datakeskusta varten. Algoritmin validointi on suoritettu, mutta lopullinen testaus tehdään RISE:n simulointiympäristössä. Yleisesti ennustamiseen soveltuvaa dataa ei ole Pohjois-Ruotsista tarjolla. Tieteellisiä artikkeleita ko. maantieteelliseltä alueelta ei löytynyt kirjallisuustutkimusta tehtäessä. Tutkimus ruotsalaisella datalla toi ymmärrystä siihen, mitkä muuttujat ovat merkittäviä Pohjois-Ruotsin alueella sekä niiden suhteellisesta merkityksestä. Kahden eri maantieteellisen alueen tietoaineiston käyttö osoitti, että ilmastolla on huomattava vaikutus koulutetun mallin suorituskykyyn. Näin onkin mielekästä käyttää koulutettua mallia vain sellaisilla alueilla, joiden sääolosuhteet ovat samankaltaiset.
Data center in Luleå has several applications to utilize wind power forecasting. Renewable energy sources are intermittent, so accurate forecasting of output power reduces a need for additional balancing of energy and reserve power in an electricity grid. Renewable energy can be reserved from market for next hour or next day to maximize its use. Forecasting from 30 min to 6 hours ahead allows job scheduling to optimize usage of renewables and to reduce power consumption. Data center may target to minimize electricity cost or maximize usage of renewables for lower greenhouse gas emissions. Smart microgrid based on artificial intelligence is the way to implement the applications.
Two open data sets from India and Sweden have been used in the research. The data available supports choosing of a statistical model. Random forest regression was the model used in the research. Data from India enabled to develop a model for one wind turbine. Developed model forecasted output power well. Swedish data set is from EEM20 competition, it included total wind power production in Sweden and had to be applied to approximate production of one wind turbine in Luleå. To achieve the goal output power of Luleå price region was averaged, and location for the simulation was chosen to be near Luleå. As expected, the accuracy of forecasting with Swedish data was reasonable, but approximations done reduced it.
The developed model was applied to RISE’s ICE data center. Validation has been done, but final testing will take place in RISE’s simulation environment. In general, data from northern Sweden is not openly available for wind power forecasting. In addition, any scientific articles covering the geographical area were not found while working on literature review. The study with Swedish competition data gave understanding, which variables are significant in northern Sweden and about their relative importances. Wind gust is such a variable. Using two data sets from different geographical locations proved that climate has a major impact on performance of the trained model. Thus, it is reasonable to use the trained model in locations with similar weather conditions only.
Datakeskuksella on useita sovelluksia tuulienergian ennustamisen hyödyntämiseksi. Uusiutuvat energialähteet ovat luonteeltaan vaihtelevia, joten tuotetun tehon tarkka ennustaminen vähentää ylimääräisen säätämisen ja reservitehon tarvetta sähköverkossa yleensäkin. Datakeskus voi varata uusiutuvaa energiaa markkinoilta seuraavaksi tunniksi tai päiväksi uusiutuvan energian käytön maksimoimiseksi. Ennustaminen 30 minuutista 6 tuntiin etukäteen mahdollistaa työjonon aikatauluttamisen uusiutuvien käytön optimoimiseksi ja vähentää tehonkulutusta. Datakeskus voi pyrkiä minimoimaan sähkön käytön kustannuksia, tai pienentämään kasvihuonekaasujen päästöjä käyttämällä mahdollisimman paljon uusiutuvaa energiaa. Tekoälyyn perustuva älykäs mikroverkko on tapa toteuttaa edellä mainitut sovellukset.
Tutkimuksessa on käytetty kahta avointa tietoainestoa Intiasta ja Ruotsista. Saatavilla oleva data tukee tilastollisen ennustemallin valintaa. Tässä työssä käytettiin satunnaismetsämenetelmää. Intian dataa käytettiin mallin kehityksessä yhtä tuulimyllyä varten. Kehitetty malli ennusti tuotetun tehon hyvin. Ruotsalainen data perustuu EEM20-kilpailuun, jossa arvioitiin koko Ruotsin tuulivoiman tuotantoa. Sitä olikin sovellettava Luulajassa olevan yhden tuulimyllyn tuotannon arvioimiseksi. Luulajan hinta-alueen tuottama teho keskiarvoistettiin, ja ennustamista varten valittiin maantieteellinen paikka läheltä Luulajaa. Kuten oli odotettavissa, soveltamisessa tehdyt likiarvoistukset pienensivät ennustamisen tarkkuutta, jota voidaan kuitenkin pitää kohtuullisena.
Kehitettyä mallia sovellettiin RISE:n ICE datakeskusta varten. Algoritmin validointi on suoritettu, mutta lopullinen testaus tehdään RISE:n simulointiympäristössä. Yleisesti ennustamiseen soveltuvaa dataa ei ole Pohjois-Ruotsista tarjolla. Tieteellisiä artikkeleita ko. maantieteelliseltä alueelta ei löytynyt kirjallisuustutkimusta tehtäessä. Tutkimus ruotsalaisella datalla toi ymmärrystä siihen, mitkä muuttujat ovat merkittäviä Pohjois-Ruotsin alueella sekä niiden suhteellisesta merkityksestä. Kahden eri maantieteellisen alueen tietoaineiston käyttö osoitti, että ilmastolla on huomattava vaikutus koulutetun mallin suorituskykyyn. Näin onkin mielekästä käyttää koulutettua mallia vain sellaisilla alueilla, joiden sääolosuhteet ovat samankaltaiset.
Kokoelmat
- Avoin saatavuus [34186]