Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Patch-based 3D reconstruction of deforming objects from monocular grey-scale videos

Mostafa, Abdelrahman (2020-06-23)

 
Avaa tiedosto
nbnfioulu-202006242661.pdf (3.667Mt)
nbnfioulu-202006242661_pdfa_report.xml (319.2Kt)
nbnfioulu-202006242661_mods.xml (11.70Kt)
nbnfioulu-202006242661_solr.xml (25.76Kt)
Lataukset: 


Mostafa, Abdelrahman
A. Mostafa
23.06.2020
© 2020 Abdelrahman Mostafa. Tämä Kohde on tekijänoikeuden ja/tai lähioikeuksien suojaama. Voit käyttää Kohdetta käyttöösi sovellettavan tekijänoikeutta ja lähioikeuksia koskevan lainsäädännön sallimilla tavoilla. Muunlaista käyttöä varten tarvitset oikeudenhaltijoiden luvan.
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202006242661
Tiivistelmä
The ability to reconstruct the spatio-temporal depth map of a non-rigid object surface deforming over time has many applications in many different domains. However, it is a challenging problem in Computer Vision. The reconstruction is ambiguous and not unique as many structures can have the same projection in the camera sensor.

Given the recent advances and success of Deep Learning, it seems promising to use and train a Deep Convolutional Neural Network to recover the spatio-temporal depth map of deforming objects. However, training such networks requires a large-scale dataset. This problem can be tackled by artificially generating a dataset and using it in training the network.

In this thesis, a network architecture is proposed to estimate the spatio-temporal structure of the deforming object from small local patches of a video sequence. An algorithm is presented to combine the spatio-temporal structure of these small patches into a global reconstruction of the scene. We artificially generated a database and used it to train the network. The performance of our proposed solution was tested on both synthetic and real Kinect data. Our method outperformed other conventional non-rigid structure-from-motion methods.
Kokoelmat
  • Avoin saatavuus [38841]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen