Energy efficiency in LoRaWAN
Iqbal, Junnaid (2020-06-15)
Iqbal, Junnaid
J. Iqbal
15.06.2020
© 2020 Junnaid Iqbal. Tämä Kohde on tekijänoikeuden ja/tai lähioikeuksien suojaama. Voit käyttää Kohdetta käyttöösi sovellettavan tekijänoikeutta ja lähioikeuksia koskevan lainsäädännön sallimilla tavoilla. Muunlaista käyttöä varten tarvitset oikeudenhaltijoiden luvan.
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202006212610
https://urn.fi/URN:NBN:fi:oulu-202006212610
Tiivistelmä
Low-power wide-area networks (LPWANs) are emerging rapidly as a fundamental Internet of Things (IoT) technology because of features like low-power consumption, long-range connectivity, and the ability to support massive numbers of users. With its high growth rate, Long Range (LoRa) is becoming the most adopted LPWAN technology. Sensor nodes are typically powered by batteries, and many network applications, which expect end-devices to operate reliably for a prolonged time. Each sensor node or actuator consumes a distinct current for a different period of time, depending on its operational state. To model a self-sufficient sensor nodes network, it is of the utmost importance to investigate the energy consumption of class-A end-devices in a LoRa Wide Area Network (LoRaWAN) with the impact of respective physical and MAC layers. Several latest published research works have analyzed the energy consumption model of a sensor node in different transmission (confirmed or unconfirmed) modes and also examined the network performance of LoRaWAN under uplink outage probabilities. This research work investigates the energy cost of the LoRaWAN, deploying hundreds of sensor nodes to transmit information messages. The proposed scheme is evaluated by considering the average power consumption of end-device powered by 2400 mAh battery. Furthermore, the energy efficiency of an unconfirmed transmission network is examined to provide the optimal number of sensor nodes for each spreading factor.
Kokoelmat
- Avoin saatavuus [34343]