Fish detection automation from ARIS and DIDSON SONAR data
Ghobrial, Mina (2019-06-25)
Ghobrial, Mina
M. Ghobrial
25.06.2019
© 2019 Mina Ghobrial. Tämä Kohde on tekijänoikeuden ja/tai lähioikeuksien suojaama. Voit käyttää Kohdetta käyttöösi sovellettavan tekijänoikeutta ja lähioikeuksia koskevan lainsäädännön sallimilla tavoilla. Muunlaista käyttöä varten tarvitset oikeudenhaltijoiden luvan.
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-201906262667
https://urn.fi/URN:NBN:fi:oulu-201906262667
Tiivistelmä
The goal of this thesis is to analyse SONAR files produced by ARIS and DIDSON manufactured by Sound Metrics Co. which are ultrasonic, monostatic and multibeam echo-sounders. They are used to capture the behaviour of Atlantic salmon, which recently has been on the lists of endangered species. These SONARs can work in dark lighting conditions and provide high resolution images due to their high frequencies that ranges from 1.1 MHz to 1.8 MHz. The thesis goes through extracting data from file, redrawing it, and visualising it in human friendly format. Next, images are analysed to search for fish. Results of analysis are saved in formats such as JSON, to allow harmony with other legacy systems. Also the output helps in future development due to the support for JSON in multitude of programming languages. Eventually, a user-friendly user interface is introduced, which helps making the process easier. The software is tested against data-sets from rivers in Finland, that are rich in Atlantic salmon.
Kokoelmat
- Avoin saatavuus [34512]