Face liveness detection by rPPG features and contextual patch-based CNN
Lin, Bofan (2019-06-04)
Lin, Bofan
B. Lin
04.06.2019
© 2019 Bofan Lin. Tämä Kohde on tekijänoikeuden ja/tai lähioikeuksien suojaama. Voit käyttää Kohdetta käyttöösi sovellettavan tekijänoikeutta ja lähioikeuksia koskevan lainsäädännön sallimilla tavoilla. Muunlaista käyttöä varten tarvitset oikeudenhaltijoiden luvan.
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-201906052450
https://urn.fi/URN:NBN:fi:oulu-201906052450
Tiivistelmä
Face anti-spoofing plays a vital role in security systems including face payment systems and face recognition systems. Previous studies showed that live faces and presentation attacks have significant differences in both remote photoplethysmography (rPPG) and texture information. We propose a generalized method exploiting both rPPG and texture features for face anti-spoofing task. First, we design multi-scale long-term statistical spectral (MS-LTSS) features with variant granularities for the representation of rPPG information. Second, a contextual patch-based convolutional neural network (CP-CNN) is used for extracting global-local and multi-level deep texture features simultaneously. Finally, weight summation strategy is employed for decision level fusion of the two types of features, which allow the proposed system to be generalized for detecting not only print attack and replay attack, but also mask attack. Comprehensive experiments were conducted on five databases, namely 3DMAD, HKBU-Mars V1, MSU-MFSD, CASIA-FASD, and OULU-NPU, to show the superior results of the proposed method compared with state-of-the-art methods. Kasvojen anti-spoofingilla on keskeinen rooli turvajärjestelmissä, mukaan lukien kasvojen maksujärjestelmät ja kasvojentunnistusjärjestelmät. Aiemmat tutkimukset osoittivat, että elävillä kasvoilla ja esityshyökkäyksillä on merkittäviä eroja sekä etävalopölymografiassa (rPPG) että tekstuuri-informaatiossa, ehdotamme yleistettyä menetelmää, jossa hyödynnetään sekä rPPG: tä että tekstuuriominaisuuksia kasvojen anti-spoofing -tehtävässä. Ensinnäkin rPPG-informaation esittämiseksi on suunniteltu monivaiheisia pitkän aikavälin tilastollisia spektrisiä (MS-LTSS) ominaisuuksia, joissa on muunneltavissa olevat granulariteetit. Toiseksi, kontekstuaalista patch-pohjaista konvoluutioverkkoa (CP-CNN) käytetään globaalin paikallisen ja monitasoisen syvään tekstuuriominaisuuksiin samanaikaisesti. Lopuksi, painoarvostusstrategiaa käytetään päätöksentekotason fuusioon, joka auttaa yleistämään menetelmää paitsi hyökkäys- ja toistoiskuille, mutta myös peittää hyökkäyksen. Kattavat kokeet suoritettiin viidellä tietokannalla, nimittäin 3DMAD, HKBU-Mars V1, MSU-MFSD, CASIA-FASD ja OULU-NPU, ehdotetun menetelmän parempien tulosten osoittamiseksi verrattuna uusimpiin menetelmiin.
Kokoelmat
- Avoin saatavuus [36616]