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Abstract—To enable wireless federated learning (FL) in com-
munication resource-constrained networks, two communication
schemes, i.e., digital and analog ones, are effective solutions.
In this paper, we quantitatively compare these two techniques,
highlighting their essential differences as well as respectively
suitable scenarios. We first examine both digital and analog
transmission schemes, together with a unified and fair compari-
son framework under imbalanced device sampling, strict latency
targets, and transmit power constraints. A universal convergence
analysis under various imperfections is established for evaluating
the performance of FL over wireless networks. These analytical
results reveal that the fundamental difference between the digital
and analog communications lies in whether communication and
computation are jointly designed or not. The digital scheme
decouples the communication design from FL computing tasks,
making it difficult to support uplink transmission from massive
devices with limited bandwidth and hence the performance is
mainly communication-limited. In contrast, the analog commu-
nication allows over-the-air computation (AirComp) and achieves
better spectrum utilization. However, the computation-oriented
analog transmission reduces power efficiency, and its perfor-
mance is sensitive to computation errors from imperfect channel
state information (CSI). Furthermore, device sampling for both
schemes are optimized and differences in sampling optimization
are analyzed. Numerical results verify the theoretical analysis and
affirm the superior performance of the sampling optimization.

Index Terms—Federated learning (FL), digital communication,
over-the-air computation (AirComp), convergence analysis.
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THE dramatic development of data science has catalyzed
significant advances in artificial intelligence (AI), which

is driving innovation for anticipated sixth-generation (6G)
mobile networks. The integration of AI and communication
is envisioned to drive the shift from connected things to ubiq-
uitous connected intelligence in wireless networks, supporting
a large number of emerging intelligent applications [2]–[5].
Nonetheless, traditional centralized learning paradigms depend
on extensive data transmission and considerable computational
resources at cloud servers, which is challenging to implement
in wireless networks. To better embrace AI, edge learning (EL)
is viewed as a promising distributed learning technique that
harnesses massive data and computational capacity available
in edge devices distributed across wireless networks [6]–
[8]. Distinguishing it from the traditional separate design for
computation and communication, EL integrates the two and
achieves efficient utilization of resources and improves perfor-
mance through learning task-oriented communication design.

In particular, a key EL paradigm, namely federated learning
(FL), has garnered significant attention from both academic
and industrial circles, primarily due to its communication-
efficient and privacy-enhancing characteristics [9], [10]. In FL,
distributed edge devices utilize local datasets to collaboratively
train a shared learning model with the assistance of a central
parameter server (PS). By exchanging model parameters in-
stead of raw data, the PS iteratively updates the global model
until convergence. FL scheme minimizes the amount of trans-
mitted data, as well as helping safeguard privacy and security.
Recent studies have explored implementation of FL algorithms
at wireless edge to support emerging AI applications [11]–
[14]. However, limited communication resources has posed
a significant bottleneck to the performance of wireless FL
[15], [16]. One particular concern regards the uplink trans-
mission process, where numerous participating devices need
to transmit local updates to the PS, leading to a substantial
increase in communication overhead and transmission latency
[17]. Hence, the development of efficient uplink transmission
is crucial to enable wireless FL.

To support data transmission in wireless FL, digital com-
munication schemes have been widely considered in recent
works, where local updates are quantized into finite bits and
then transmitted to the PS via traditional frequency division
multiple access (FDMA) and time division multiple access
(TDMA) schemes. At the receiver, the PS relies on chan-
nel coding for error detection and correction, before model
aggregation using the received local updates. In [12] and
[18], the authors characterized the impact of packet errors
on the convergence of FL, which enabled a task-oriented
communication resource allocation scheme. The influence of
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various finite-precision quantization schemes in uplink and
downlink communications was considered in [19]. Building
upon convergence analysis of the quantized FL, the quantiza-
tion bits allocation was optimized in [20] and [21] to adapt
channel diversity and requirements of the FL tasks. To further
alleviate the communication bottleneck, one-bit quantization
technique and reconfigurable intelligent surface (RIS) were
used in [22] to reduce communication overhead and enhance
communication reliability, respectively. Apart from resource
allocation methods, modifications from the algorithmic per-
spective have been considered to combat unreliable transmis-
sions. In [23], the authors proposed a user datagram protocol
(UDP)-based robust training algorithm, which asymptotically
achieved the same convergence rate as that with error-free
communications. Moreover in [24], for replacing erroneous
local updates, a global model reusing scheme, namely the
GoMORE scheme, was devised to successfully mitigate the
negative impacts of packet loss. Alternatively, another solution
is to further squeeze the communication overhead, thus im-
proving the convergence over resource-constrained networks.
The model pruning in [25] was seen to be an effective way to
compress the large-scale model into a smaller size, facilitating
communication-efficient FL design.

In addition to these digital communication schemes, analog
communication is an alternative communication-efficient way
for deploying wireless FL. In particular, the local updates
are amplitude-modulated and then simultaneously transmit-
ted by reusing the available radio resource. Due to the
superposition property of radio channels, the global model
can be computed automatically over-the-air, which is there-
fore referred to as over-the-air computation (AirComp) [26].
Unlike the digital paradigm, analog communication pushes
model aggregation from the PS to the air, which not only
functionally but physically integrates the computation and
communication. Benefiting from the over-the-air aggregation,
the communication latency is substantially reduced and the
spectrum utilization is much more efficient, leading to fast-
convergent and communication-efficient FL. It was shown in
[27] that the convergence rate of centralized learning remains
approachable with this analog approach without power control
and beamforming. Furthermore in [28], to combat deep fading,
a novel truncated channel inversion scheme was proposed to
exclude devices experiencing deep fades from the training
process avoiding excessive energy consumption. Further in-
sights into analog aggregation schemes were also discussed in
the context of fundamental trade-offs between communication
and learning. Besides, the impact of over-the-air aggregation
errors on optimality gap was analyzed in [29] and [30] with
power control optimization. Furthermore, the authors in [31]
proposed an AirComp-based adaptive reweighing scheme for
the aggregation, and jointly considered the power control and
device selection deign based on the derived optimality gap. To
combat the additive noise, robust FL training methods were
proposed in [32] for both the expectation-based and the worst-
case noise models. Considering multi-antenna scenarios, the
beamforming design at the receiver was optimized by solving a
sparse and low-rank optimization problem in [33]. In practice,
considering the lack of perfect channel state information (CSI)

for accurate power control, the work [34] investigated the
impact of CSI uncertainty at the transmitter on FL conver-
gence and revealed that CSI imperfection plays an key factor
affecting the AirComp performance and convergence.

As mentioned above, by incorporating learning task-
oriented resource allocation, both digital and analog trans-
missions are effective ways to fulfill the communication re-
quirements of wireless FL [35]–[37]. In traditional communi-
cation for data transmission, digital communication schemes
have been proven not only in theory but also in practice as
dominantly outperforming analog communication techniques
in almost all cases of interest. In communications for compu-
tation tasks, however, analog communication has shown to be
exceptionally effective in some cases of resource-constrained
networks [38]. Hence, it is of interest to comprehensively
compare digital and analog transmissions for wireless FL.
Several recent studies have compared the two communication
paradigms from some specific perspectives, including com-
munication latency [28], [39] and convergence performance
[40], [41]. However, to the best of our knowledge, there is a
lack of literature that presents a comprehensive and quantita-
tive comparison between the two fundamental communication
paradigms, especially under practical constraints. Also, there
have been few attempts to elucidate the fundamental differ-
ences between digital and analog transmissions in the context
of FL, which is crucial for its deployment and design.

Against this background, in this paper, we conduct a theo-
retical comparison between the digital and analog transmission
schemes under practical constraints. The main contributions of
this paper are summarized as follows.
• We propose a unified framework for digital and analog

transmissions in wireless FL, and characterize the model
aggregation distortion caused by wireless transmission
schemes. Using this framework, a fair comparison is
conducted under the consideration of a stringent trans-
mission delay target and two types of transmit power
budgets. We exploit optimality gap, defined by the gap
between the optimal and actually achieved loss function
value, to characterize the convergence behavior and es-
tablish a stringent upper bound of the optimality gap for
precise analysis and optimization in the digital/analog
transmission enabled wireless FL. It offers a precise
characterization of the influence of wireless transmission
imperfections on convergence in closed-form.

• Analytical results reveal that the digital transmission is
hard to achieve satisfactory performance especially with
limited radio resources due to orthogonal access and
decoupled design. In contrast, the analog scheme exhibits
a performance gain in terms of the optimality gap of the
order of 1

N with the increasing number of participating
devices, N , and thereby achieving a higher level of effi-
ciency in spectrum utilization. However, the introduction
of computation goals in the analog communication pro-
cess results in less efficient transmit power utilization, and
the presence of CSI uncertainties inevitably comes with
computational distortion, thus enlarging the optimality
gap by the order of 1

ρ2 with a decreasing level of channel
estimation accuracy ρ.
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Fig. 1. The architecture of a typical wireless FL system.

• Based on the derived optimality gap, we formulate an in-
clusion probability optimization problem for effective de-
vice sampling in wirless FL. The optimization problems
for both digital and analog cases are optimally solved
by checking the Karush-Kuhn-Tucker (KKT) conditions
and exploiting the Dinkelbach algorithm, respectively.
Through the examination of optimal solutions, we iden-
tify the essential differences underlying the device sam-
pling optimization for digital and analog transmissions.

Extensive numerical simulations are conducted to validate
the derived analytical observations and the proposed sampling
optimization. In particular, it is observed that the digital
scheme has better power utilization, while the analog trans-
mission is more spectrum-efficient.

The rest of this paper is organized as follows. In Section II,
we describe the typical FL algorithm, with details of digital
and analog transmissions, and propose a fair comparison
framework. Section III provides some preliminaries for the
convergence analysis. In Section IV, we analyze the conver-
gence performance under different transmission schemes and
offer engineering insights. Then, in Section V, we optimize the
inclusion probabilities for both the digital and analog schemes.
Simulation results and conclusions are given in Sections VI
and VII, respectively.

Notation: Boldface lowercase (uppercase) letters represent
vectors (matrices). The set of all real numbers is denoted
by R. Superscripts (·)T and (·)∗ stand for the transpose and
conjugate operations, respectively. The operator <(·) returns
the real part of the input complex number. The operator ‖·‖
takes the Euclidean norm of vectors. A circularly symmetric
complex Gaussian distribution is denoted by CN , and E{·} is
the expectation operation.

II. SYSTEM MODEL AND COMMUNICATION FRAMEWORK

We consider a typical wireless FL system as shown in Fig. 1,
where K distributed devices are coordinated by a central PS
to perform FL. The training procedure and transmission model
are elaborated in the sequel.

A. Federated Learning Model
In FL, the distributed devices collaboratively train a shared

machine learning model via local computing based on their

local datasets and information exchange with the PS. Let Dk
denote the local dataset owned by the k-th device, which
contains Dk = |Dk| training samples. The goal of the FL
algorithm is to find the optimal d-dimensional model param-
eter vector, denoted by w∗ ∈ Rd×1, to minimize the global
loss function F (w), i.e.,

w∗ = arg min
w

F (w) = arg min
w

1

D

K∑
k=1

DkFk(w)

= arg min
w

K∑
k=1

αkFk(w), (1)

where D ,
∑K
k=1Dk, αk , Dk

D represents the aggregation
weight for the k-th user, and Fk(w) is the local loss function
at device k defined as

Fk(w) =
1

Dk

∑
u∈Dk

L(w,u), (2)

where u denotes a training sample selected from Dk, and
L(w,u) represents the sample-wise loss function with respect
to u. Due to the heterogeneity of the system, we note that local
datasets at distinct devices are usually non-independent and
non-identically distributed (non-IID), and the optimal model
parameters in (1) are not necessarily the optimal for local
datasets. Let w∗k denote the locally optimal model at device
k, i.e., w∗k = arg minw Fk(w). It is usually different from the
globally optimal w∗ unless the local dataset Dk experiences
the same distribution as the whole data population.

To effectively handle the optimization problem in (1), an FL
algorithm performs the model training in an iterative manner.
Specifically, the m-th round of the FL algorithm consists of
the following steps.

1) Model Broadcasting: The PS broadcasts the latest global
model wm to al devices.

2) Local Computing: After receiving wm, each device ex-
ploits its local dataset to compute the local gradient as

gkm , ∇Fk(wm) =
1

Dk

∑
u∈Dk

∇L(wm,u), ∀k. (3)

3) Local Update Uploading: Each device reports its local
gradient to the PS.

4) Model Aggregation: Upon receiving all local gradients,
the PS updates the global model according to

wm+1 = wm − ηgm, (4)

where η is the learning rate and gm is given by

gm ,
K∑
k=1

αkg
k
m. (5)

The above steps iterate until a convergence condition is met.
Considering the potentially massive number of devices and

limited resources in practice, only a subset of devices can
participate in each round of the training. Let Sm denote the set
of activated devices selected in the m-th communication round
and N = |Sm| be the number of participating devices per
round. Due to imbalanced dataset sizes and data heterogeneity,
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we assume that the PS performs non-uniform device sampling
without replacement to select the participating devices per
round. Specifically, the devices are randomly selected one
by one from the remaining unselected device set. Once the
number of selected devices reaches N , the sampling process
terminates. Denote the inclusion probability of the device k as
rk, which represents the probability of device k being sampled
per round and satisfies rk ≤ 1, ∀k, and

∑K
k=1 rk = N . Due to

the non-IID nature of the data, misaligned inclusion probability
may bias the global model away from the local optimum,
thereby decelerating the convergence and causing performance
loss. Hence, in the following sections, we focus on the
performance evaluation under fixed inclusion probabilities and
characterize the impact of device sampling for wireless FL.

Also, in wireless FL, the parameter transmission in Steps
1) and 3) relies on wireless communication between the PS
and devices, which comes with additional imperfection in
the model training procedure. Considering a sufficient power
budget at the PS, the downlink transmission is usually assumed
error-free [12]. Otherwise, for uplink transmission with lim-
ited communication resources, additional errors are inevitable.
Efficient transmission and resource allocation schemes need to
be designed to alleviate this impact of wireless environment.

B. Uplink Transmission Method

We rely on the wireless uplink transmission to provide an
estimation of the actual gradient in (5). Assume that the total
uplink bandwidth B can be divided into up to M subbands,
which supports orthogonal access for M devices. Without
loss of generality, a frequency non-selective block fading
channel model is adopted, where the wireless channels remain
unchanged within a communication round. Let h̄k = d

−α2
k hk

be the channel between the k-th device and the PS, where
dk denotes the distance between the PS and device k, α
represents the large-scale path loss exponent, and hk represents
the small-scale fading of the channel. Assume that the channels
are independent Rayleigh fadings, i.e., hk ∼ CN (0, 1). In
practice, perfect estimation of the small-scale fading of the
channel is usually not available. Let ĥk denote the estimated
channel at device k. Then, we model the CSI imperfection of
the small-scale fading as

hk = ρĥk +
√

1− ρ2vk, (6)

where ρ ∈ (0, 1] is the correlation coefficient between hk and
ĥk to reflect the level of channel estimation accuracy, and vk ∼
CN (0, 1) is the channel estimation error independent of ĥk.
In the following, we introduce two typical uplink transmission
schemes, i.e., digital and analog transmissions.

1) Digital Transmission Model: In the digital transmission,
the N selected devices first quantize their local updates into
a finite number of b bits and then simultaneously transmit the
quantized local updates to the PS. Specifically, we assume that
the local update gkm is quantized by the stochastic quantization
method in [20]. Denote the maximum and the minimum values
of the modulus among all parameters in gkm by gkm,max and
gkm,min, respectively. Then, the interval [gkm,min, g

k
m,max] is

divided evenly into 2b−1 quantization intervals. The uniformly

distributed knobs are denoted by τi = gkm,min+
gkm,max−g

k
m,min

2b−1 i

for i = 0, · · · , 2b − 1. Given |x| ∈ [τi, τi+1), the quantization
function Q(x) is expressed as

Q(x) =

{
sign(x)τi w.p. τi+1−|x|

τi+1−τi ,

sign(x)τi+1 w.p. |x|−τi
τi+1−τi ,

(7)

where sign(·) represents the signum function and “w.p.” repre-
sents “with probability.” Exploiting the quantization function
in (7), the local update gkm is quantized as Q

(
gkm
)
,[

Q
(
gkm,1

)
, · · · ,Q

(
gkm,d

)]T
, which is transmitted to the PS.

Note that the exact value of gkm,max and gkm,min need to
be transmitted to the PS with sufficient precision to support
effective recovery. Hence, the total number of bits needed for
transmitting amounts to

btotal = d(b+ 1) + q, (8)

where q is the number of bits used to represent gkm,max and
gkm,min, and the additional one bit is the sign bit.

During the uplink FL parameter report, transmission errors
are inevitable due to the channel dynamics and limited com-
munication resources. Without loss of generality, we adopt the
typical FDMA technique as an example. Assume that M ≥ N
and hence each device can occupy different subbands equally
to avoid interference with each other.1 Then, the channel
capacity of device k can be evaluated as

Ck = Bk log2

(
1 +

Pk|h̄k|2

BkN0

)
, (9)

where Bk is the bandwidth allocated to device k and it is set
to B

N , Pk is the transmit power at device k, and N0 is the
noise power density.

The transmission delay under the digital transmission is
primarily influenced by stragglers, which refer to devices with
poor channel conditions. To avoid the uncontrolled severe
delay brought by stragglers, we assume that all the devices
transmit the local updates at a fixed rate rather than a dynamic
one based on instantaneous signal-to-noise ratio (SNR) levels.
Hence, the use of a fixed-rate transmission acts as a truncation
mechanism for stragglers. Additionally, for devices experi-
encing favorable channel conditions, it is more beneficial to
transmit at a lower rate with enhanced transmission reliability.
The target transmission rate is denoted by R = B

N log2(1+θ),
where θ is a chosen constant. According to [12], the transmis-
sion is assumed error-free if the transmission rate is no larger
than the channel capacity. Hence, the probability of successful
transmission at device k is calculated as

pk = Pr {R ≤ Ck} = exp

(
− BN0θ

2NPkd
−α
k

)
. (10)

At the PS, a cyclic redundancy check (CRC) mechanism is
applied to check the detected data such that erroneous local

1We generally assume orthogonal access between different devices and
refrain from specifying the particular multiple access design. Hence, the
following analysis can be safely extended to orthogonal access scenarios like
TDMA and orthogonal frequency division multiple access (OFDMA).
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updates can be excluded from the model aggregation. Finally,
the obtained estimate of the desired gradient in (5) is given by

ĝm,D =

K∑
k=1

χkαkξk,D
rk

Q(gkm), (11)

where χk is an indicator variable for the device selection,
and ξk,D represents distortion brought by packet loss. To
be concrete, χk is 1 if k ∈ Sm and otherwise χk is 0.
Considering the definition of the inclusion probability, we
have E [χk] = rk ≤ 1, which decreases the desired expected
aggregation coefficient for unbiased gradient estimation. In
order to compensate for the impact of partial participation, we
multiply the coefficient 1

rk
in (11), such that 1

rk
E [χk] = 1.

Analogously, the distortion ξk,D is characterized by the prob-
ability in (10) as

ξk,D =

{ 1
pk

w.p. pk,
0 w.p. 1− pk,

(12)

to ensure E [ξk,D] = 1. With the gradient estimate in (11), the
global model updated at the (m+ 1)-th round equals to

w̃m+1 = w̃m − ηĝm,D, (13)

where w̃m denotes the model obtained at the previous round.
2) Analog Transmission Model: In the analog transmission

with AirComp, selected devices simultaneously upload the
uncoded analog signals of local gradients to the PS by fully
reusing the time-frequency resource. A weighted summation of
the local updates in (5) can be achieved by exploiting channel
pre-equalization and the waveform superposition nature of the
wireless channel. In this study, we consider that the total
bandwidth is constrained for fair comparison and all subbands
are utilized for the transmission of identical parameters. This
is because the uncoded nature of the analog transmission
diminishes its robustness, rendering it more vulnerable to
interference and even the malicious attacks.2 Specifically, the
received signal at the PS is expressed as

y =

K∑
k=1

χkh̄kβkg
k
m + zm, (14)

where βk is the pre-processing factor at device k, and zm
is additive white Gaussian noise following CN (0, BN0I).
To accurately estimate the desired gradient in (5), the pre-
processing factor βk should be adapted to the channel co-
efficient h̄k. Unlike the digital transmission, CSI is needed
at the transmitter for the analog transmission. Channel pre-
equalization is performed based on the CSI available at each
device. For simplicity, we adopt the typical truncated channel
inversion scheme to combat deep fades [28]. It is expressed
as

βk =

 ζλαkd
α
2
k ĥ

∗
k

rk|ĥk|2
|ĥk|2 ≥ γth,

0 |ĥk|2 < γth,
(15)

2The derived results directly extend to the case of dividing bandwidth for
distinct parameter transmission in broadband scenarios [28].

TABLE I
MAIN DIFFERENCES BETWEEN THE TWO PARADIGMS

Paradigms Gradient estimation Transmission delay Power budget
Digital (11) (21) (23)
Analog (16) (24) (25), (26)

where γth is a predetermined power-cutoff threshold, ζ is a
scaling factor for ensuring the transmit power constraint, and
compensation coefficient λ is selected to alleviate the impact
of imperfect CSI [34]. Through the pre-processing in (15), we
aim to eliminate the influence of the uneven channel fading h̄k,
and the inclusion probability pk, thereby ensuring the unbiased
gradient estimation.

At the receiver, the PS scales the real part of y in (14) with
1
ζ and obtain an estimate of the actual gradient in (5). It yields

ĝm,A =

K∑
k=1

χkαkξk,A
rk

gkm + z̄m, (16)

where z̄m ,
<{zm}
ζ is the equivalent noise, and ξk,A denotes

the distortion brought by the analog transmission with imper-
fect CSI. It follows

ξk,A =

{
λ<{h∗

kĥk}
|ĥk|2

w.p. e−γth ,

0 w.p. 1− e−γth .
(17)

Similarly, the global model at the (m+ 1)-th round under the
analog transmission is updated as

w̃m+1 = w̃m − ηĝm,A. (18)

C. A Unified Framework for Wireless FL Comparison

To minimize the optimality gap brought by imperfect uplink
transmission, the overall FL task-oriented optimization over
the wireless networks can be formulated as

minimize E [F (wm+1)]− F (w∗)

subject to C1 : T ≤ Tmax,

C2 : Pk ≤ Pmax, ∀k, (19)

where the expectation is taken over channel dynamics, T
represents uplink transmission delay per round, Tmax and
Pmax denotes the maximum transmission delay target and
the transmit power unit, respectively. Constraint C1 and C2

respectively represent the maximum transmission delay and
maximum transmit power constraint in practice. Apart from
the maximum power budget, another typical transmit power
constraint is the average power budget [28], i.e.,

C̄2 : E[Pk] ≤ Pave, ∀k, (20)

where Pave denotes the average power budget and limits the
energy consumption during the uplink transmission process.

For fair comparison between the two transmission
paradigms, we measure the achievable objective value of the
problem in (19) under the same transmission delay target
and transmit power budget. Specific constraints for the two
transmission paradigms are listed as follows, summarized in
Table I.
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For digital transmission, the transmission delay per commu-
nication round is calculated as

TD =
btotal
R

=
Nd(b+ 1)

B log2(1 + θ)
, (21)

where the evaluation holds with a sufficiently large model size
d. Hence, constraint C1 is reformulated as

Nd(b+ 1)

B log2(1 + θ)
≤ Tmax ⇒ θ ≥ 2

Nd(b+1)
BTmax − 1. (22)

For constraint C2, due to its interference-free characteristic,
full power transmission is optimal and hence the constraint is
reformulated by

Pk = Pmax, ∀k. (23)

Also, with the average transmit power budget, we assume
invariant transmit power over different communication rounds
and have Pk = Pave, ∀k.

For analog transmission, according to [39, Eq. (16)], the
per-round delay follows

TA =
dM

B
, (24)

which is a constant. For feasibility, we assume that the
target Tmax cannot be smaller than TA. The maximum power
constraint C2 is rewritten as

max
m,k

{∥∥βkgkm∥∥2} ≤ Pmax, (25)

for the analog transmission. Unlike the digital transmission, it
is impossible to fully utilize the maximum power in analog
transmission due to the need for channel pre-equalization. On
the other hand, the average power constraint C̄2 follows

E
[∥∥βkgkm∥∥2] ≤ Pave, (26)

where the expectation is taken over the wireless channel
dynamics and different communication rounds.

III. PRELIMINARIES

To pave the way for performance analysis, this section
provides necessary assumptions and lemmas about the learning
algorithms and the transmission paradigms, which will be
useful in the next section.

A. Assumptions for Learning Algorithms

To begin with, we make several common assumptions on
the loss functions, which are widely used in FL studies like
[12], [29], [42].

Assumption 1: The local loss functions Fk(·) are µ-strongly
convex for all devices, that is

Fk(w) ≥ Fk(v) +∇Fk(v)T (w − v) +
µ

2
‖w − v‖2. (27)

Assumption 2: The local loss functions Fk(·) are differen-
tiable and have L-Lipschitz gradients, which follows

‖∇Fk(w)−∇Fk(v)‖ ≤ L‖w − v‖, (28)

and it is equivalent to

Fk(w) ≤ Fk(v) +∇Fk(v)T (w − v) +
L

2
‖w − v‖2. (29)

Assumption 3: In most practical applications, it is safe to
assume that the sample-wise gradient is always upper bounded
by a finite constant γ, i.e.,

‖∇L(w,u)‖ ≤ γ. (30)

Assumption 4: The distance between the locally optimal
model, w∗k, and the globally optimal model, w∗, is uniformly
bounded by a finite constant δ, i.e.,

‖w∗k −w∗‖ ≤ δ. (31)

B. Preliminary Lemmas

We present lemmas regarding the strong convexity and
Lipschitz smooth properties of the global loss function.

Lemma 1: With µ-strongly convex and L-smooth local loss
functions, the global loss function F (·) is also µ-strongly
convex and L-smooth.

Proof: Recalling the definition of F (·) in (1), with As-
sumptions 1-2, it is easily verified that any linear combination
of µ-strongly convex and L-smooth local loss functions also
satisfies (27) and (29). The proof completes. �

We then provide the following lemma regarding the imper-
fection in digital and analog transmission paradigms.

Lemma 2: Under the stochastic quantization and the pro-
posed digital aggregation in (11), ĝm,D is an unbiased estimate
of the actual gradient in (5). For the considered analog
paradigm in (16), by choosing λ = eγth

ρ , the gradient estimate
ĝm,A is also unbiased.

Proof: Please refer to Appendix A. �

Although both the digital and analog transmissions achieve
unbiased gradient estimations, there are fundamental differ-
ences in the distortion between the two paradigms. For the
digital transmission, the distortion mainly lies in the gradients
themselves, i.e., gradient quantization errors. On the other
hand, due to the integration of communication and computa-
tion in AirComp, the analog transmission additionally suffers
from distortion in coefficient aggregation, i.e., computation
error, which is due to the CSI imperfection. This essential
difference further discriminates the performances of digital and
analog transmissions, which are elaborated in the next section.

IV. COMPARISON WITH CONVERGENCE ANALYSIS

In this section, we analyze the convergence performance
under the digital and analog transmissions with the practical
constraints for wireless FL. Based on the derived results,
we further conduct quantitative comparisons between the two
paradigms from various perspectives of view.
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E [F (w̃m+1)]− F (w∗) ≤ L

2

(
1− ηµ+ 2η2L2gD(r, b)

)m+1 E
[
‖w̃0 −w∗‖2

]
+
η(Lφ(b) + 2L3δ2)gD(r, b)

2µ− 4ηL2gD(r, b)
, (32)

E [F (w̃m+1)]− F (w∗) ≤ L

2

(
1− ηµ+ 2η2L2gA(r, γth)

)m+1 E
[
‖w̃0 −w∗‖2

]
+
η
(
Lϕ(r, γth) + 2L3δ2gA(r, γth)

)
2µ− 4ηL2gA(r, γth)

. (33)

A. Convergence under the Maximum Power Budget

We characterize the convergence performance under differ-
ent transmission paradigms in the following theorems.

Theorem 1 (Digital Transmission): For a fixed learning
rate satisfying η ≤ µ

2L2gD(r,b)
, the optimality gap of the

distributed gradient update in the (m + 1)-th iteration of
the digital transmission is equal to (32) at the top of the
next page, where φ(b) is a constant defined in Appendix B
regarding the quantization errors, r , [r1, · · · , rK ]T , and
gD(r, b) ,

∑K
k=1

αk
pkrk

.

Proof: Please refer to Appendix B. �

Theorem 2 (Analog Transmission): For a fixed learning
rate satisfying η ≤ µ

2L2gA(r,γth)
, the optimality gap

of the distributed gradient update in the (m + 1)-th
iteration of the analog transmission is equal to (33)
at the top of the next page, where gA(r, γth) ,∑K
k=1

αk
rk

(
eγth + (1−ρ2)E1(γth)e

2γth

2ρ2

)
−1, E1(x),

∫∞
x

e−t

t dt,

and ϕ(r, γth), BN0γ
2e2γth

2Pmaxρ2γth
maxk

{
α2
k

r2k
dαk

}
.

Proof: Please refer to Appendix C. �

From Theorems 1-2, we find that the convergence rate
mainly depends on the choice of the learning rate η, while
the imperfections in transmission also have a certain impact.
We conclude the following immediate observations on the
convergence rate.

Remark 1: As observed in (32) and (33), the convergence
performace of an FL algorithm is negatively related to gD(r, b)
for digital transmission and to gA(r, γth) for analog transmis-
sion. We refer to gD(r, b) and gA(r, γth) as the virtual sum
weight for the digital and analog transmissions, respectively,
which reflects the degree of hindrance to the convergence
imposed by unequal sampling and vulnerable wireless com-
munication. Under the ideal case, with full device participation
and no transmission outage, the virtual sum weight equals to
1, otherwise it is amplified by the imperfect characteristics. It
is interesting to note that, for devices with more data samples,
i.e., larger αk, the impact of imperfections is exaggerated.

Remark 2: Comparing gD(r, b) and gA(r, γth), it can be
seen that the vulnerability of digital transmission introduces
additional heterogeneity, i.e., varying pk, which does not exist
in the analog paradigm. This is because outage probability
in the digital case is determined by channel conditions and
varying across different devices. On the other hand, due to the
uniform truncation threshold, all participating devices enjoy
the same truncation probability in the analog transmission.
Hence, in design of inclusion probabilities r for the digital
case, we need to adapt the inclusion probabilities to both

dataset size and channel condition. By contrast, in the case
of analog transmission, only the heterogeneity of the dataset
size needs to be considered.

According to Theorems 1-2, we are ready to derive the
optimality gap after convergence for further evaluation in the
following corollary, which reflects the ultimately achievable
performance of the wireless FL.

Corollary 1: With sufficient iterations, the optimality gap
achieved by digital and analog transmissions, respectively,
converges to

GD =
η(Lφ(b) + 2L3δ2)gD(r, b)

2µ− 4ηL2gD(r, b)
, (34)

GA =
η
(
Lϕ(r, γth) + 2L3δ2gA(r, γth)

)
2µ− 4ηL2gA(r, γth)

. (35)

Proof: Consider the digital transmission scenario with a
sufficient number of iterations. We have

lim
m→∞

E [F (w̃m+1)]− F (w∗)

≤ lim
m→∞

L

2

(
1− ηµ+ 2η2L2gD(r, b)

)m+1 E
[
‖w̃0 −w∗‖2

]
+
η(Lφ(b) + 2L3δ2)gD(r, b)

2µ− 4ηL2gD(r, b)

(a)
=
η(Lφ(b) + 2L3δ2)gD(r, b)

2µ− 4ηL2gD(r, b)
= GD, (36)

where the inequality is obtained through Theorem 1 and the
equality in (a) is due to the fact that η < µ

2L2gD(r,b)
, i.e.,(

1− ηµ+ 2η2L2gD(r, b)
)
< 1. Hence, the achieved optimal-

ity gap at convergence is bounded by GD. As for the analog
transmission, the proof is almost the same and is omitted here
for simplity. �

From Corollary 1, we further compare the two typical
paradigms from the following perspectives and conclude in-
sightful remarks that are instructive for the deployment of FL
in wireless networks. As a summary, we list main comparison
results in Table II. For the sake of simplicity in analysis, with-
out loss of generality, we drop the unbalance of the datasets
and assume uniform inclusion probabilities, i.e., αk = 1

K , and
rk = N

K , ∀k, which does not cause any essential changes.
Also we set that Tmax = TA. Note that the learning rate is
assumed to be sufficiently small and hence the convergence
rate remains the same for all cases.

1) Impact of Transmit Power: At low SNR levels, the
achievable optimality gap under the digital transmission, GD,
vanishes as O (exp (ε/Pmax)) with the maximum transmit
power budget Pmax, where ε , maxk

{
BN0θ

2Nd−αk

}
. At high
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TABLE II
MAIN COMPARISON RESULTS WITH RESPECT TO OPTIMALITY GAP

Paradigms
Transmit power budget, P

Device number, N Imperfect CSI, ρ
Low SNR High SNR

Digital O
(
exp

(
ε
P

))
↘ → G∞

D O
(

1
N
exp(ε12ε2N/N)

)
↗ /

Analog O
(

1
P

)
↘ → G∞

A O
(

1
N

)
↘ O

(
1
ρ2

)
↗

* The upward arrow indicates amplification at a certain order, while the downward arrow has the opposite meaning. The horizontal arrow indicates that
it ultimately tends towards a fixed value.

SNR regime, i.e., Pmax → ∞, the successful transmission
probability pk → 1, ∀k and GD tends to

G∞D , lim
Pmax→∞

GD =
η(Lφ(b) + 2L3δ2)K

2µN − 4ηL2K
. (37)

On the other hand, the decay rate for GA is equal to
O (1/Pmax) with low SNR values and the high SNR-limiting
value is

G∞A , lim
Pmax→∞

GA =
2ηL3δ2 (Kc−N)

2µN − 4ηL2 (Kc−N)
, (38)

where c , eγth + (1−ρ2)E1(γth)e
2γth

2ρ2 .

Remark 3: As SNR increases, the optimality gap for the
analog case mainly comes from the non-IID datasets while
the impact of the noise asymptotically diminishes. For the
digital case, however, quantization errors additionally impose
an impact. Under the analog transmission, the negative impact
of non-IID datasets is enlarged due to imperfect AirComp.
Imperfect CSI results in mismatched channel inversion in
AirComp, rendering perfect computation of weighted sum
impossible. Moreover, the performance degradation brought
by imperfect CSI in the analog transmission cannot be miti-
gated by occupying more resources. Conversely, in the digital
transmission, the convergence performance can be improved
by occupying additional resources for increasing the number
of quantization bits.

2) Impact of Device Number: With the increasing number
of participating devices, N , the virtual sum rate for the analog
transmission, gA(r, γth), decreases at a rate of 1

N , i.e., a faster
convergence rate is achieved. As for the optimality gap, the
impact of non-IID datasets asymptotically dominates GA and
the decay rate is equal to O(1/N). Due to the involvement
of more devices, a more accurate global gradient is obtained
at the PS, which in turn facilitates the FL convergence and
leads to better performance. Meanwhile, since different de-
vices involved in the AirComp share the same time-frequency
resource, an increase in access devices causes no deterioration
of the AirComp performance, fully capturing the performance
gain from more participating devices.

On the other hand, for the digital case, convergence per-
formance does not necessarily monotonically change with
N . Although more participating devices do bring perfor-
mance gains, it also leads to a significant deterioration of
the transmission performance considering that limited com-
munication resources are divided among additional users.
Thus the convergence is compromised between communi-
cation reliability and the computation accuracy for wireless

FL. Specifically, the optimality gap, GD, enlarges with a rate
of O

(
1
N exp(ε12ε2N/N)

)
with sufficiently large N , where

ε1 = BN0

2Pd−αK
and ε2 = b+1

M .

Remark 4: Benefiting from the characteristics of AirComp,
more participating devices in the analog transmission always
lead to performance improvement regardless of other parame-
ters. Hence, allowing all active devices to participate in the
FL training is the best choice for analog transmission. By
contrast, in the digital transmission, it is necessary to seek
a balance between the transmission performance and diversity
gain through an optimization of N .

3) Impact of Imperfect CSI: The imperfect CSI at the trans-
mitter only affects the performance of analog transmission,
which deteriorates at the order of 1

ρ2 . Due to imperfect CSI,
the aggregation computation and the truncation decision in
AirComp are contaminated, thus leading to a mismatch in the
model aggregation and the impact of noise amplification.

Remark 5: After incorporating computation capabilities
into the analog case, the emergence of computation error as a
new source of error has positioned computational accuracy as
a crucial factor affecting the convergence performance. It is
concluded that CSI is a key factor affecting the performance
gain brought by AirComp. Moreover, the truncation threshold
γth should be optimized to adapt different levels of channel
estimation accuracy. It can be effectively solved via bisection
search in [34].

4) Impact of the Number of Quantization Bits: In the
digital transmission, the number of quantization bits, b, also
influences the FL performance in the following implicit ways.
By selecting the minimum feasible θ = 2

Nd(b+1)
BTmax − 1 in (22),

the achievable optimality gap GD is rewritten as

GD ≈
η

2µ

(
L∆2

(2b − 1)2
+ 2L3δ2

)
gD(r, b)

=
η

2µ

(
L∆2

(2b − 1)2
+ 2L3δ2

)

×

 K∑
k=1

αk
rk

exp

BN0

(
2
Nd(b+1)
BTmax − 1

)
2NPkd

−α
k

 , (39)

where the approximation is obtained in region of η �
µ

2L2gD(r,b)
. It is found that as b increases, GD tends to first

decrease and then increase. This is due to the diminishing
quantization error term φ(b) with an increasing quantization
accuracy and finally GD is dominated by the impact of packet
loss. Therefore, it is necessary to optimize of the integer
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variable b to pursue better convergence performance, which
can be solved by a low-complexity exhaustive search method.

B. Convergence Analysis under the Average Power Budget

We consider the convergence with the average transmit
power budget. For the digital transmission, by replacing Pmax

with Pave, we derive the similar results as Theorem 1 and is
omitted here due to page limit. As for the analog transmission,
we have the following corollary.

Corollary 2: For a fixed learning rate satisfying η ≤
µ

2L2gA(r,γth)
, the optimality gap of the distributed gradient

update in the (m+1)-th iteration under the analog transmission
follows

E [F (w̃m+1)]− F (w∗)

≤ L

2

(
1− ηµ+ 2η2L2gA(r, γth)

)m+1 E
[
‖w̃0 −w∗‖2

]
+
η
(
Lϕave(r, γth) + 2L3δ2gA(r, γth)

)
2µ− 4ηL2gA(r, γth)

, (40)

where ϕave(r, γth) , BN0γ
2e2γthE1(γth)
2Paveρ2

maxk

{
α2
k

r2k
dαk

}
. The

optimality gap with sufficient iterations follows

GA,ave =
η
(
Lϕave(r, γth) + 2L3δ2gA(r, γth)

)
2µ− 4ηL2gA(r, γth)

. (41)

Proof: please refer to Appendix D. �

Remark 6: It is worth noting that E1(γth) < 1
γth

when
γth > 0. Compared with the maximum transmit power
budget, a smaller optimality gap for the analog transmission is
achieved with the average power budget. Due to the need for
channel alignment in AirComp, the performance is dominantly
limited by the device with the worst channel condition. Fur-
thermore, the strict peak power constraint amplifies the impact
of worst-case channel conditions, resulting in looser conver-
gence performance compared to the long-term constraint.

To summarize, while the analog AirComp improves the
spectrum utilization compared to the digital paradigm, it faces
challenges in fully utilizing the power resource, particularly
with strict peak power constraints. Conversely, orthogonal
access in digital transmission is not suitable for scenarios with
massive access due to the limitations in spectrum resources.

C. Discussions on Scenarios with Advanced System Designs

To facilitate performance analysis, we introduce assump-
tions regarding the system design, including multiple access,
parameter quantization, and power control methods. Subse-
quently, we delve into the implications of advanced system
designs on the FL performance and comparison.

In the digital transmission, the FL performance can pri-
marily be improved from two aspects, namely enhancing
transmission reliability and optimizing resource utilization.
Specifically, advanced transmissions strategies help minimize
transmission errors and packet losses due to channel fading.
Furthermore, if other resource allocation methods, such as the
model compression design and device scheduling strategies,

are exploited toward the FL tasks, they prioritize crucial
parameter/device transmissions and thus lifting the resource
utilization. On the other hand, in the analog transmission, the
FL performance through AirComp is primarily influenced by
the over-the-air computational accuracy. Optimized transceiver
and power control designs help mitigate the negative impact
of channel fading on the FL performance.

While further optimization of system designs enhances
performance, it is essential to note that the performance limits
for the digital and analog transmissions remains unchanged.
As observed in the above analytical results, in the digital
transmission paradigm, due to the decoupling of the com-
munication and computation processes, the number of bits
that can be accurately transmitted with the limited resources
is determined, which places an upper bound of the FL per-
formance. In contrast, within the analog transmissions, the
receiver does not aim to recover information from individual
sources but instead prioritizes the precision of computation
results derived from the over-the-air superimposed signals,
thereby making computational accuracy a decisive role. Hence,
the performance limit of the analog transmission is contingent
upon the channel estimation accuracy and additive noise level.

V. DEVICE SAMPLING OPTIMIZATION

Based on the derived results in Section IV, we are able to
further establish an optimization design of the device sampling
for the wireless FL to improve the convergence.

A. Digital Transmission

By direct inspection of (34), the optimality gap GD mono-
tonically decreases with a decreasing virtual sum weight.
Hence, the device sampling optimization problem with the
digital transmission is formulated as

minimize
r

gD(r, b) =

K∑
k=1

αk
pkrk

subject to
K∑
k=1

rk = N, rk ≤ 1, k = 1, 2, · · · ,K, (42)

which is a convex problem. By exploiting the KKT conditions,
we obtain the optimal inclusion probability as

r∗k = min

{√
αk
νpk

, 1

}
, (43)

where ν is the Lagrangian multiplier and it is selected to
satisfy

∑K
k=1 r

∗
k = N . Note that the value of

∑K
k=1 r

∗
k varies

monotonically with ν and thus we can rely on a bisection-
based search method [13] to get the optimal solution of
problem (42).

Remark 7: The optimal inclusion probability is positively
correlated with the local dataset size while it behaves con-
versely correlated with the successful transmission probability.
In other words, a device with a larger dataset is deemed more
important for model training, thereby deserving a sampling
bias. Conversely, devices with lower successful transmission
probabilities contribute less to the model training process,
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Fig. 2. Convergence performance under digital transmission: (a) MNIST dataset, (b) CIFAR-10 dataset.

0 50 100 150 200 250 300 350 400

Communication rounds

30

40

50

60

70

80

90

T
e
s
t 
a
c
c
u
ra

c
y
 (

%
)

(a)

0 200 400 600 800 1000 1200

Communication rounds

20

30

40

50

60

T
e
s
t 
a
c
c
u
ra

c
y
 (

%
)

(b)

Fig. 3. Convergence performance under analog transmission: (a) MNIST dataset, (b) CIFAR-10 dataset.

requiring more frequent sampling to compensate. Thus, the
goal of our inclusion probability optimization is to address
the imbalances in the dataset size, and the heterogeneity
introduced by uneven channel fading. It ensures fair and
effective participation among diverse devices.

Moreover, note that the influence of quantization error
and data heterogeneity are equally amplified by gD(r, b). It
indicates that the optimization of inclusion probabilities r
cannot adequately adapt to varying local data distributions.

B. Analog Transmission

As for the analog transmission, the device sampling opti-
mization is expressed as

minimize
r

ϕ(r, γth) + 2L2δ2gA(r, γth)

2µ− 4ηL2gA(r, γth)

subject to
K∑
k=1

rk = N, rk ≤ 1, k = 1, 2, · · · ,K. (44)

Note that under the average transmit power budget, (41) only
differs from the objective value in the constant term, and hence
we will not discuss it separately. Considering the intractable
fractional form of the objective function in (44), we rely on
the well-known Dinkelbach algorithm for reformulation [43],

[44]. According to the definition of ϕ(r, γth) and gA(r, γth)
in (35), it is easy to check that the denominator of the
objective function in (44) is concave and the numerator is
convex. Hence, the iterative Dinkelbach algorithm guarantees
to converge to the global optimum of (44). Concretely, in the
t-th iteration, we reformulate the problem in (44) as

minimize
r

ϕ(r, γth) + (2L2δ2 + 4ηL2ς(t−1))gA(r, γth)

subject to
K∑
k=1

rk = N, rk ≤ 1, k = 1, 2, · · · ,K. (45)

where ς(t−1) is a constant determined in the previous round.
Note that the problem in (45) is convex and thus can be solved
by numerical convex program solvers, e.g., CVX tools [45].
After obtaining the optimal r(t) of the t-th subproblem in (45),
the auxiliary constant is updated as

ς(t) =
ϕ(r(t), γth) + 2L2δ2gA(r(t), γth)

2µ− 4ηL2gA(r(t), γth)
. (46)

Iterating the above steps until convergence, we obtain the
optimal r of the problem in (44).

Remark 8: Unlike the digital transmission case, the device
sampling optimization is committed to seeking a trade-off
between the equivalent noise power ϕ(r, γth) and virtual sum
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Fig. 4. Test accuracy versus transmit power budget.

weight gA(r, γth), and the parameter δ functions as a weight-
ing factor to facilitate the optimal trade-off. At high SNR
regimes or with extremely uneven local data distributions, the
noise term is comparably ignorable and hence the optimality
gap is dominated by gA. Hence, the optimization of r is
isolated from specific channel conditions and only needs to
match the size of local datasets.

VI. NUMERICAL RESULTS

In this section, we provide simulation results to verify the
performance analysis and the inclusion probability optimiza-
tion. We deploy K = 20 edge devices uniformly distributed in
a square area with radius 500 m and a PS at the center of the
square area. The most popular MNIST dataset and CIFAR-
10 dataset are exploited for the FL performance evaluation.
The MNIST dataset contains 10 classes of handwritten digits
ranging from 0 to 9 and we train a multi-layer perceptron
(MLP) with d = 23, 860 parameters via the wireless FL
algorithm for classification purposes. Moreover, the CIFAR-10
dataset includes 10 classes with labels 0-9 and we train a con-
volutional neural network (CNN) with d = 60, 000 parameters.
The trained CNN contains two convolutional layers and three
fully connected layers. Max pooling operation is conducted
following each convolutional layer and the activation function
is ReLU. Different edge devices own different data samples,
and each local dataset has up to two types of data samples to
capture the non-IID characteristic.

Unless otherwise specified, the other parameters are set as:
the number of participating devices N = 10, the bandwidth,
B = 1 MHz, the path loss exponent, α = 3, the noise power
N0 = −80 dBm/Hz, the maximum transmit power budget,
Pmax = 0 dB, the number of quantization bits, b = 8, the
truncation threshold, γth = 0.5, the delay target Tmax is equal
to TA in (24), and the learning rate η = 0.01. We set L = 8 and
µ = 2, which fall within the existing typical range of values in
[46], [47]. Additionally, the parameter δ, serving as an upper
bound of ‖w∗k −w∗‖2, is estimated through simulation tests.

A. Convergence Performance

In Figs. 2 and 3, we depict the convergence performance
for the digital and analog transmission. As shown in Fig.
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Fig. 5. Test accuracy versus the number of participating devices.
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Fig. 6. Test accuracy versus the accuracy level of channel estimation accuracy.

2, we observe that the convergence rate and optimality gap
under digital transmission exhibit a negative correlation with
the virtual sum weight, aligning with our theoretical analysis.
Moreover, the convergence behavior remains consistent with
the analytical results despite the complexity of the classifi-
cation task, thereby validating the accuracy of the theoretical
analysis.

For the analog case depicted in Fig. 3, consistent with the
analytical findings, we notice that the convergence rate is
negatively correlated with the virtual sum weight gA, which is
determined by ρ and γth. On the other hand, transmit power
only affects the achievable optimality gap after convergence.
This is because changes in transmit power only affect the
equivalent power of the additive noise. Additionally, modi-
fications in ρ and γth affect the distortion of the aggregation
coefficient, which in turn influences the computation error.
Furthermore, the increased complexity of FL tasks renders
fluctuations in the performance curve more sensitive to noise.
Consequently, in the analog communication, the superimposed
white Gaussian noise is significantly severer than quantization
errors observed in the digital transmission, thus leading to
more pronounced fluctuations in convergence performance.
It implies that for more complex learning tasks, it becomes
imperative to further reduce the variance of gradient estimation
to mitigate excessive fluctuations and their adverse impacts on
convergence.
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Fig. 7. Convergence performance with different inclusion probabilities and digital transmission: (a) MNIST dataset, (b) CIFAR-10 dataset.
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Fig. 8. Convergence performance with different inclusion probabilities and analog transmission: (a) MNIST dataset, (b) CIFAR-10 dataset.

B. Impact of Transmit Power Budget

In Fig. 4, we show the test accuracy versus different transmit
power budgets. It is observed that the digital transmission
scheme outperforms the analog scheme, particularly with high
SNR levels. In such cases, employing more quantization bits
yields the best performance. Conversely, for low SNR levels,
reducing the quantization bits leads to marginal performance
loss, highlighting the flexibility of the digital schemes by
selecting different quantization accuracies. On the other hand,
the analog scheme faces significant performance limitations,
particularly with the maximum transmit power budget and less
CSI, due to the stringent requirements of channel inversion.
Therefore, in terms of power utilization, the digital scheme is
more efficient than the analog counterpart.

C. Impact of Participating Device Numbers

Fig. 5 illustrates the test accuracy versus the number of
participating devices. We note that for the analog transmis-
sion, the test accuracy gradually increases as N increases.
In contrast, although the performance in digital case may be
improved initially, it eventually decline rapidly as each device
can only occupy a limited amount of resources, making it
unable to support high-rate transmission. Consequently, the
results suggest that for digital transmission, the selection

of N requires further optimization according to the actual
conditions, with a preference for fewer devices.

D. Impact of Channel Estimation Accuracy

In Fig. 6, we present the impact of channel estimation accu-
racy on the analog case. It is evident that better performance
can be achieved with more accurate CSI. Additionally, we
observe that smaller truncation thresholds are more suitable
for larger ρ, while larger truncation thresholds are preferred
for smaller ρ. This is because higher CSI uncertainties have a
significant impact on truncation choices, necessitating looser
truncation conditions to reduce incorrect choices.

E. Impact of Different Inclusion Probabilities

In Figs. 7 and 8, we depict the convergence performance
with different inclusion probabilities. For comparison, we con-
sider the following baselines for comparison. For the sake of
fairness, all schemes refrain from utilizing specific information
on instantaneous CSI and gradients.
• Uniform [48]: The inclusion probabilities are uniformly

assigned the same value, i.e., pk = 1
K .

• Learning-oriented [49]: From the perspective of learning
algorithms, the probability is set to be proportional to the
size of the local datasets, i.e., pk ∝ αk.



13

• Channel-aware: From the perspective of wireless chan-
nels, the probability is set to be proportional to the large-
scale path loss, i.e., pk ∝ d

−α2
k .

• Min-distortion [50]: To minimize the communication
distortion in the analog transmission, the probability is
set to be proportional to αkd

α
2

k by considering both the
local datasets and channel conditions.

As shown in Fig. 7, the proposed method consistently out-
performs the aforementioned baseline methods across all lev-
els. The first two baselines neglect the influence of the wireless
transmission process, resulting in performance degradation.
The sampling method based on channel conditions tends to
select devices with better channels, effectively reducing packet
loss rates and yielding significant performance improvements.
However, due to its oversight of imbalanced size of local
datasets, its final performance remains inferior to our proposed
method. The fourth baseline, tailored for the analog trans-
mission scenarios, partially accounts for the impact of local
datasets and wireless channels but lacks optimality, leading to
limited performance gains.

As for the analog transmission case in Fig. 8, we note
that although the performance of the optimized probability
is superior, the performance gain compared to the other
baselines is not significant. This limit arises from the reliance
on constants L, µ, and δ in the optimization problem (44),
which are challenging to determine accurately in practice,
thus affecting the final performance. Similarly, akin to the
digital transmission, the sampling method based on channel
conditions effectively mitigates the negative impact of the
imperfect wireless transmission. However, its disregard for
data characteristics results in suboptimal performance, particu-
larly in the complex classification tasks on CIFAR-10 dataset,
leading to significant performance fluctuations. Furthermore,
the baseline method of minimizing computational distortion
overlooks the impact of data heterogeneity, thus impeding its
ability to achieve satisfactory performance.

VII. CONCLUSION

In this paper, we have provided a detailed comparison
between digital and analog transmission enabled wireless FL.
To this end, we considered general transmission designs for
both schemes and conducted a fair comparison between them.
Then, we analyzed the convergence behavior of wireless FL
in terms of the convergence rate and optimality gap under
digital and analog cases, and compared the convergence per-
formance from multiple perspectives. It was found that digital
transmission is more suitable for scenarios with sufficient
radio resources and CSI uncertainties. On the other hand,
analog transmission is suitable when their are massive num-
bers of participating devices. Next, we addressed sampling
optimization for both cases, and further developed insights
for optimization, which ars useful for practical deployment.
Finally, experimental results illuminated the analytical results
and the sampling strategies. Additionally, an explicit and
precise characterization of data heterogeneity and targeted
system designs with theoretical guarantees should be of our
interest in the future work.

APPENDIX A
PROOF OF LEMMA 2

For the digital case, according to [19, Lemma 5], we first
conclude that the quantized gradients Q(gkm) is unbiased, i.e.,

E
[
Q(gkm)

]
= gkm. (47)

Combining with the fact that E [ξk,D] = 1 in (12), we have

E [ĝm,D]
(a)
=

K∑
k=1

αkE
[
χk
rk

]
E [ξk,D]E

[
Q(gkm)

]
=

K∑
k=1

αkg
k
m = gm, (48)

where (a) comes from the definition of ĝm,D and the in-
dependence among device sampling, small-scale fadings and
stochastic quantization.

As for the analog transmission, by exploiting [34, Lemma 1],
we have E [ξk,A] = 1. Combining with the statistical charac-
teristic of χk and z̄m and following the same procedures in
(48), we get the desired conclusion, i.e., E [ĝm,A] = gm. The
proof completes.

APPENDIX B
PROOF OF THEOREM 1

To begin with, we define an auxiliary variable as

ŵm+1 = w̃m − ηgm, (49)

which represents the model obtained at (m + 1)-th round
via ideal communication and full participation. Then, by
exploiting Assumption 2 and the fact that ∇F (w∗) = 0, we
have

E [F (w̃m+1)]− F (w∗) ≤ L

2
E
[
‖w̃m+1 −w∗‖2

]
(a)
=
L

2

E
[
‖w̃m+1 − ŵm+1‖2

]
︸ ︷︷ ︸

A1

+E
[
‖ŵm+1 −w∗‖2

]
︸ ︷︷ ︸

A2

 ,

(50)

where (a) is due to the fact that ĝm,D is an unbiased estimate
of gm. For the term A1, it is bounded by

A1 = η2E
[
‖ĝm,D − gm‖2

]
= η2E

∥∥∥∥∥
K∑
k=1

χkαkξk,D
rk

Q(gkm)−
K∑
k=1

αkg
k
m

∥∥∥∥∥
2


(a)
= η2E

∥∥∥∥∥
K∑
k=1

αk

(
χkξk,D
rk
Q(gkm)−

K∑
i=1

αig
i
m

)∥∥∥∥∥
2


(b)
≤ η2

K∑
k=1

αkE

∥∥∥∥∥χkξk,Drk
Q(gkm)−

K∑
i=1

αig
i
m

∥∥∥∥∥
2


= η2
K∑
k=1

αkE
[∥∥∥∥(χkξk,Drk

Q(gkm)− gkm

)
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+

(
gkm −

K∑
i=1

αig
i
m

)∥∥∥∥∥
2


(c)
= η2

K∑
k=1

αkE

[∥∥∥∥χkξk,Drk
Q(gkm)− gkm

∥∥∥∥2
]

︸ ︷︷ ︸
B1

+ η2
K∑
k=1

αkE

∥∥∥∥∥gkm −
K∑
i=1

αig
i
m

∥∥∥∥∥
2


︸ ︷︷ ︸
B2

, (51)

where (a) is because
∑K
k=1 αk = 1, (b) exploits the convexity

of ‖ · ‖2, and (c) is due to the fact that E
[
χkξk,D
rk
Q(gkm)

]
=

gkm. According to [20], the variance of quantization error is
bounded as

E
[∥∥Q(gkm)− gkm

∥∥2] ≤ d

4

(
gkm,max − gkm,min

2b − 1

)2

≤ ∆2

(2b − 1)2
, φ(b) (52)

where ∆2 is defined as a uniform upper bound of
d
4

(
gkm,max − gkm,min

)2
, ∀m, k. Then, B1 is bounded by

B1 =

K∑
k=1

αkE
[∥∥∥∥(χkξk,Drk

Q(gkm)− χkξk,D
rk

gkm

)

+

(
χkξk,D
rk

gkm − gkm

)∥∥∥∥2
]

=

K∑
k=1

αkE

[(
χkξk,D
rk

)2
]
E
[∥∥Q(gkm)− gkm

∥∥2]
+

K∑
k=1

αkE

[(
χkξk,D
rk

− 1

)2
]
E
[∥∥gkm∥∥2]

(a)
≤

K∑
k=1

φ(b)αk
pkrk

+

K∑
k=1

αk

(
1

pkrk
− 1

)
E
[
‖∇Fk(w̃m)‖2

]
,

(53)

where (a) uses E
[(

χkξk,D
rk

)2]
= 1

pkrk
and

E
[(

χkξk,D
rk
− 1
)2]

= 1
pkrk

− 1. Next, by expanding the

square term, we reformulate B2 as

B2 =

K∑
k=1

αkE

∥∥∥∥∥∇Fk(w̃m)−
K∑
i=1

αi∇Fi(w̃m)

∥∥∥∥∥
2


=

K∑
k=1

αk

E
[
‖∇Fk(w̃m)‖2

]
+ E

∥∥∥∥∥
K∑
i=1

αi∇Fi(w̃m)

∥∥∥∥∥
2


−2E

[
∇Fk(w̃m)T

(
K∑
i=1

αi∇Fi(w̃m)

)])

=

K∑
k=1

αkE
[
‖∇Fk(w̃m)‖2

]
− E

∥∥∥∥∥
K∑
i=1

αi∇Fi(w̃m)

∥∥∥∥∥
2


=

K∑
k=1

αkE
[
‖∇Fk(w̃m)‖2

]
− E

[
‖∇F (w̃m)‖2

]
. (54)

Then for A2, we have

A2 = E
[
‖w̃m −w∗ − η∇F (w̃m)‖2

]
= E

[
‖w̃m −w∗‖2

]
− 2ηE

[
(w̃m −w∗)T∇F (w̃m)

]
+ η2E

[
‖∇F (w̃m)‖2

]
(a)
≤ (1− ηµ)E

[
‖w̃m −w∗‖2

]
+ 2ηE [F (w∗)− F (w̃)]

+ η2E
[
‖∇F (w̃m)‖2

]
(b)
≤ (1− ηµ)E

[
‖w̃m −w∗‖2

]
+ η2E

[
‖∇F (w̃m)‖2

]
,

(55)

where the inequality in (a) is due to Assumption 1, and (b) is
due to the fact that F (w∗)− F (w) ≤ 0 for ∀w ∈ Rd.

Combining all the results in (51)-(55), it yields

E
[
‖w̃m+1 −w∗‖2

]
≤ (1− ηµ)E

[
‖w̃m −w∗‖2

]
+

K∑
k=1

η2αk
pkrk

E
[
‖∇Fk(w̃m)‖2

]
+

K∑
k=1

η2αkφ(b)

pkrk
. (56)

We further rewrite the second term in the right hand side
(RHS) of (56) as

E
[
‖∇Fk(w̃m)‖2

]
(a)
= E

[
‖∇Fk(w̃m)−∇Fk(w∗k)‖2

]
(b)
≤ L2E

[
‖w̃m −w∗k‖

2
]

= L2E
[
‖w̃m −w∗ + w∗ −w∗k‖

2
]

(c)
≤ 2L2E

[
‖w̃m −w∗‖2

]
+ 2L2δ2, (57)

where (a) comes from ∇Fk(w∗k) = 0, (b) exploits Assump-
tion 2, and (c) uses Assumption 3 and the inequality ‖a+b‖2 ≤
2‖a‖2 + 2‖b‖2. By defining gD(r, b) =

∑K
k=1

αk
pkrk

, we
conclude that

E
[
‖w̃m+1 −w∗‖2

]
≤
(
1− ηµ+ 2η2L2gD(r, b)

)
E
[
‖w̃m −w∗‖2

]
+ η2(φ(b) + 2L2δ2)gD(r, b)

≤
(
1− ηµ+ 2η2L2gD(r, b)

)m+1 E
[
‖w̃0 −w∗‖2

]
+
η(φ(b) + 2L2δ2)gD(r, b)

µ− 2ηL2gD(r, b)
. (58)

Plugging (58) into (50), we obtain the convergence result and
complete the proof.

APPENDIX C
PROOF OF THEOREM 2

As for the analog transmission, the main difference from
the digital transmission lies in the term B1 in (51). With the
analog case, B1 is expressed as

B1 =

K∑
k=1

αkE

[∥∥∥∥χkξk,Ark
gkm + z̄m − gkm

∥∥∥∥2
]
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=

K∑
k=1

αkE

[∥∥∥∥(χkξk,Ark
− 1

)
gkm

∥∥∥∥2
]

+ E
[
‖z̄m‖2

]
=

K∑
k=1

αkE

[(
χkξk,A
rk

− 1

)2
]
E
[
‖∇Fk(w̃m)‖2

]
+ E

[
‖z̄m‖2

]
. (59)

For the equivalent noise term, recalling that z̄m = <{zm}
ζ , we

first derive the scaling factor ζ. Constrained by the transmit
power budget in (25), the scaling factor ζ must satisfy

max
k∈Sm

{
ζ2e2γthα2

kd
α
k

ρ2r2k|ĥk|2
E
[∥∥gkm∥∥2]

}
≤ Pmax. (60)

Based on Assumption 3 and the definition in (3), we can
conclude that∥∥gkm∥∥ ≤ 1

Dk

∑
u∈Dk

‖∇L(wm,u)‖ ≤ γ. (61)

Note that for all the activated devices, we have |ĥk|2 ≥ γth.
Hence, we select the feasible ζ as

ζ =
ρ
√
Pmaxγth
γeγth

min
k

{
rk
αk
d
−α2
k

}
. (62)

Then, we have

E
[
‖z̄m‖2

]
=
BN0γ

2e2γth

2Pmaxρ2γth
max
k

{
α2
k

r2k
dαk

}
. (63)

Next, the variance of the coefficient distortion, χkξk,D
rk

, is
calculated as

E

[(
χkξk,A
rk

− 1

)2
]

(a)
= rkE

[(
ξk,A
rk
− 1

)2
]

+ 1− rk

= rk

E

(<{h∗kĥk}eγth
|ĥk|2ρrk

− 1

)2
∣∣∣∣∣∣ |ĥk|2 ≥ γth


×Pr

{
|ĥk|2 ≥ γth

}
+ Pr

{
|ĥk|2 < γth

})
+ 1− rk

= rke
−γthE

(<{h∗kĥk}eγth
|ĥk|2ρrk

− 1

)2
∣∣∣∣∣∣ |ĥk|2 ≥ γth


+ 1− rke−γth

(b)
=

(
eγth +

(1− ρ2)E1 (γth) e2γth

2ρ2

)
1

rk
− 1, (64)

where (a) exploits the independence of χk and ξk,A, (b) is due
to [34, Eq. (25)]. Substituting (64) into (59) and combining
the results in (54) and (55), we complete the proof.

APPENDIX D
PROOF OF COROLLARY 2

To begin with, the expectation of |βk|2 is calculated as

E
[
|βk|2

]
=
ζ2λ2αkd

α
k

r2k
E

[
1

|ĥk|2

]
(a)
=
ζ2λ2αkd

α
k

r2k
E1(γth), (65)

where (a) comes from the fact that |ĥk|2 follows an expo-
nential distribution and the integral

∫∞
γth

1
xe
−xdx = E1(γth).

Substituting (61) into (26), we get a feasible ζ as

ζ =
ρ
√
Pave

γeγth
√

E1(γth)
min
k

{
rk
αk
d
−α2
k

}
. (66)

Then, following the same steps as in Appendix C, we complete
the proof.
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[47] M. M. Amiri, D. Gündüz, S. R. Kulkarni, and H. V. Poor, “Convergence
of federated learning over a noisy downlink,” IEEE Trans. Wireless
Commun., vol. 21, no. 3, pp. 1422–1437, Mar. 2022.

[48] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of FedAvg on non-iid data.” in Proc. Int. Conf. Learn. Representations
(ICLR), 2019.

[49] T. Li et al., “Federated optimization in heterogeneous networks,” in Proc.
Mach. Learn. Syst., 2020, pp. 429–450.

[50] Y. Sun, Z. Lin, Y. Mao, S. Jin, and J. Zhang, “Channel and gradient-
importance aware device scheduling for over-the-air federated learning,”
IEEE Trans. Wireless Commun. (Early Access). 2023.

Jiacheng Yao (Graduate Student Member, IEEE)
received the B.S. degree in information science
and engineering from Southeast University, Nanjing,
China, in 2022. He is currently working towards
a Ph.D. degree in information and communication
engineering at the National Mobile Communications
Research Laboratory, Southeast University, Nanjing,
China. His current research includes integrated com-
munication and computation. He was a recipient of
the Best Paper Award from IEEE ICC 2024.

Wei Xu (S’07-M’09-SM’15) received his B.Sc.
degree in electrical engineering and his M.S. and
Ph.D. degrees in communication and information en-
gineering from Southeast University, Nanjing, China
in 2003, 2006, and 2009, respectively. Between 2009
and 2010, he was a Post-Doctoral Research Fellow
at the University of Victoria, Canada. He was an
Adjunct Professor of the University of Victoria in
Canada from 2017 to 2020, and a Distinguished
Visiting Fellow of the Royal Academy of Engineer-
ing, U.K. in 2019. He is currently a Professor at

Southeast University. His research interests include information theory, signal
processing, and machine learning for wireless communications.

He received the Science and Technology Award for Young Scholars of
the China Institute of Communications in 2018, the Science and Technology
Award of the Chinese Institute of Electronics (Second Prize) in 2019, the
National Natural Science Foundation of China for Outstanding Young Scholars
in 2020, the IEEE Communications Society Heinrich Hertz Award in 2023,
and the Best Paper Awards at IEEE Globecom 2014, IEEE ICCC 2014,
ISWCS 2018, WCSP 2017, 2021, and ICC 2024. He served as an Editor
for IEEE TRANSACTIONS ON COMMUNICATIONS from 2018 to 2023. He
also served for IEEE COMMUNICATIONS LETTERS as firstly an Editor from
2012 to 2017, then a Senior Editor from 2020 to 2023, and is now an Area
Editor. He is a Fellow of IET.



17

Zhaohui Yang (Member, IEEE) received the Ph.D.
degree from Southeast University, Nanjing, China, in
2018. From 2018 to 2020, he was a Post-Doctoral
Research Associate at the Center for Telecommuni-
cations Research, Department of Informatics, King’s
College London, U.K. From 2020 to 2022, he was a
Research Fellow at the Department of Electronic and
Electrical Engineering, University College London,
U.K. He is currently a ZJU Young Professor with the
Zhejiang Key Laboratory of Information Processing
Communication and Networking, College of Infor-

mation Science and Electronic Engineering, Zhejiang University. His research
interests include joint communication, sensing, and computation, federated
learning, and semantic communication. He received the 2023 IEEE Marconi
Prize Paper Award, 2023 IEEE Katherine Johnson Young Author Paper Award,
2023 IEEE ICCCN best paper award, and 2024 IEEE ICC best paper award.
He was the Co-Chair for international workshops with more than ten times
including IEEE ICC, IEEE GLOBECOM, IEEE WCNC, IEEE TGCN, IEEE
CL, IEEE TMLCN. He has served as a Guest Editor for several journals
including IEEE Journal on Selected Areas in Communications.

Xiaohu You (Fellow, IEEE) received the M.S.
and Ph.D. degrees in electrical engineering from
Southeast University, Nanjing, China, in 1985 and
1988, respectively. Since 1990, he has been with the
National Mobile Communications Research Labora-
tory, Southeast University, where he is currently the
Director and a Professor. From 1999 to 2002, he was
a Principal Expert of the C3G Project, responsible
for organizing China’s 3G Mobile Communications
Research and Development Activities. From 2001
to 2006, he was a Principal Expert of the China

National 863 Beyond 3G FuTURE Project. Since 2013, he has been a Principal
Investigator of the China National 863 5G Project. He has contributed over
200 IEEE journal articles and two books in the areas of adaptive signal
processing and neural networks, and their applications to communication
systems. His research interests include mobile communication systems, and
signal processing and its applications.

Dr. You was selected as an IEEE Fellow for his contributions to the devel-
opment of mobile communications in China in 2011. He was a recipient of the
National 1st Class Invention Prize in 2011. He has served as the General Chair
of the IEEE Wireless Communications and Networking Conference 2013, the
IEEE Vehicular Technology Conference 2016, and the IEEE International
Conference on Communications 2019. He is the Secretary-General of the
FuTURE Forum and the Vice-Chair of the China IMT-2020 Promotion Group
and the China National Mega Project on New Generation Mobile Network.

Mehdi Bennis (Fellow, IEEE) is a Professor at
the Centre for Wireless Communications, Univer-
sity of Oulu, Finland, IEEE Fellow and head of
the intelligent connectivity and networks/systems
group (ICON). He has published more than 400
research papers in international conferences, journals
and book chapters. He has been the recipient of
several prestigious awards including the 2015 Fred
W. Ellersick Prize from the IEEE Communications
Society, the 2016 Best Tutorial Prize from the IEEE
Communications Society, the 2017 EURASIP Best

paper Award for the Journal of Wireless Communications and Networks, the
all-University of Oulu award for research, the 2019 IEEE ComSoc Radio
Communications Committee Early Achievement Award and the 2020-2023
Clarviate Highly Cited Researcher by the Web of Science.

H. Vincent Poor (S’72, M’77, SM’82, F’87) re-
ceived the Ph.D. degree in EECS from Princeton
University in 1977. From 1977 until 1990, he was
on the faculty of the University of Illinois at Urbana-
Champaign. Since 1990 he has been on the faculty at
Princeton, where he is currently the Michael Henry
Strater University Professor. During 2006 to 2016,
he served as the dean of Princeton’s School of
Engineering and Applied Science. He has also held
visiting appointments at several other universities,
including most recently at Berkeley and Cambridge.

His research interests are in the areas of information theory, machine learning
and network science, and their applications in wireless networks, energy
systems and related fields. Among his publications in these areas is the
recent book Machine Learning and Wireless Communications. (Cambridge
University Press, 2022). Dr. Poor is a member of the National Academy of
Engineering and the National Academy of Sciences and is a foreign member
of the Chinese Academy of Sciences, the Royal Society, and other national
and international academies. He received the IEEE Alexander Graham Bell
Medal in 2017.


