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Abstract

Engagement measurement �nds application in health-
care, education, services. The use of physiological and be-
havioral features is viable, but the impracticality of tradi-
tional physiological measurement arises due to the need for
contact sensors. We demonstrate the feasibility of unsuper-
vised remote photoplethysmography (rPPG) as an alterna-
tive for contact sensors in deriving heart rate variability
(HRV) features, then fusing these with behavioral features
to measure engagement in online group meetings. Firstly,
a unique Engagement Dataset of online interactions among
social workers is collected with granular engagement la-
bels, offering insight into virtual meeting dynamics. Sec-
ondly, a pre-trained rPPG model is customized to recon-
struct rPPG signals from video meetings in an unsupervised
manner, enabling the calculation of HRV features. Thirdly,
the feasibility of estimating engagement from HRV features
using short observation windows, with a notable enhance-
ment when using longer observation windows of two to four
minutes, is demonstrated. Fourthly, the effectiveness of be-
havioral cues is evaluated when fused with physiological
data, which further enhances engagement estimation per-
formance. An accuracy of 94% is achieved when only HRV
features are used, eliminating the need for contact sensors
or ground truth signals; use of behavioral cues raises the
accuracy to 96%. Facial analysis offers precise engagement
measurement, bene�cial for future applications.

1. Introduction

The rapid transition to online communication underlines
the importance of engagement analysis in virtual meetings.

* Corresponding author.

Figure 1. A largeEngagement Datasetof realistic online meetings.
Facial videos and cPPG were recorded.

With the absence of physical cues and direct interaction
between individuals, assessing engagement becomes more
challenging. Nevertheless, estimating engagement during
these interactions offers key insights into participant behav-
ior, group dynamics, and individual input, helping meeting
organizers promote effective collaboration.

Engagement analysis in virtual meetings often relies on
facial and body language recognition [11, 23], although
they can’t gauge direct physiological responses like heart
rate variability (HRV), which is dif�cult for individuals
to fake [45]. Electrocardiography (ECG) would be ideal
but is limited by its need for direct contact. In contrast,
remote photoplethysmography (rPPG), a computer vision-
based technique, assesses cardiac activity through facial
color changes. This makes it suitable for online engagement
estimation as it obviates the need for direct contact and spe-
cialized equipment [37]. Using unsupervised deep learning
for rPPG signal extraction eliminates the need for ground
truth signals, labeled datasets, and expert annotations, en-
hancing �exibility in engagement estimation.

This article pioneers the application of unsupervised
rPPG measurement technology in estimating engagement
during online meetings. It also proposes an enhancement in
engagement estimation by integrating behavioral cues such
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as facial expression and motion. This study discusses po-
tential impediments affecting the performance of rPPG in
engagement analysis. A signi�cant in�uence on engage-
ment estimation performance arises from the size of the ob-
servation window employed for calculating HRV features
from the obtained rPPG signal. Moreover, aEngagement
Datasetof online group meetings (captured in real-world
scenarios) among social workers is collected (Fig. 1), the
�rst to explore engagement levels in group interactions, es-
pecially with many participants. It contains 1.5-hour videos
for in-depth engagement analysis, unveiling evolving inter-
actions and gradual shifts in group dynamics, and incor-
porates heart rate (HR) data from contact PPG (cPPG), a
feature absent in public datasets. By using a continuous
engagement range of -10 to +10, theEngagement Dataset
captures nuances that tend to be neglected in other datasets
[19, 24, 27]. The analysis reveals that participant engage-
ment is linked to work effectiveness and mitigates job stress,
underlining the study’s practical value.

2. Related work
Automated engagement analysis research, initiated by
Whitehill et al. [47] in 2014, showcased machine learn-
ing’s capacity to estimate engagement with human-like pre-
cision. Subsequent studies explored a wide range of appli-
cations [26], including education [39], social media [16],
news [20], human-robot [38] and human-human interaction
[10], consumer engagement [16], healthcare [43], games
[12], and �lm viewing analysis [8]. These studies explored
behavioral features like facial expressions [18], eye gaze
[13], and body gestures [25]. There were studies that uti-
lized physiological features,e.g., [41] used features ex-
tracted from electroencephalogram (EEG) signals. In addi-
tion, studies also analyzed modalities reliant solely on text
[5], reaction time [35], and response accuracy [35]. Rather
than using a single modality, scientists have investigated
multi-modality fusion methods merging facial expression-
related features with speech/audio [22], head and body
pose/gestures/motions [36], physiological signals (such as
electroencephalographic - EEG activity [3], thermal signals
[17], and electrodermal activity - EDA [15]), game events
[36], mouse behavior [50], and contextual information [4].
Past research on engagement estimation is robust, but fails
to leverage the improvements rPPG data can provide. No-
tably, rPPG technology has been applied in affective com-
puting, showing promise in assessing emotional states such
as depression [9], stress [37], and embarrassment [48], in-
dicating unexploited potential for engagement analysis.

Over the past decade, only one study in 2016 by
Monkaresiet al. [34] explored HR for engagement estima-
tion, but it faced major constraints. Firstly, they relied on
contact ECG sensors for HR, impractical in real use. Our
approach, however, uses a non-intrusive method, eliminat-

ing contact sensors. Secondly, the video methods of that
time [21] con�ned their research to lab data, suffering in
real HR detection scenarios. Conversely, our method is
tested and effective in real-life conditions. Moreover, us-
ing only seven basic HR statistical features, they failed to
fully exploit HR signals’ potential, leading to a high clin-
ical error rate, as the authors acknowledged. Their experi-
ments showed that HR signals were less effective than facial
expressions in estimating engagement, likely due to unreli-
able cardiac information. HRV features, strongly linked to
mental states [30], offer potential as ef�cient engagement
indicators demanding more research, driving this work’s in-
novative approach to physiological signals.

As engagement estimation methods advanced, multiple
datasets were created. Real-world e-learning engagement
was �rst examined by theDAiSEE dataset [19] in 2016.
The horizons of student engagement analysis in educational
games were broadened by theMultimodal Affective State
Recognition Dataset[36]. Using theMHHRI dataset [10],
engagement in dyadic human and triadic human-human-
robot contexts was explored. In 2017,UE-HRI dataset
[7] further expanded the scope of human-robot interaction
and centered around interactions with the robot Pepper. In
the domain of e-learning, theEngageWilddataset [24] and
VRESEEdatasets [40] delved deep into students’ engage-
ment patterns. YouTube gaming videos and facial engage-
ment modalities were uniquely integrated in theFaceEn-
gagedataset [12]. A predictive direction in the �eld was
signi�ed by the PAFE dataset [27] in 2022 and the Enga-
geNet dataset [42] in 2023, both utilizing different con-
texts. Primarily, all mentioned datasets offer only visual
modality for engagement analysis, with just two exceptions:
the MHHRI dataset [10] includes data from audio, video,
depth, electrodermal activity (EDA), temperature, and 3-
axis wrist acceleration, while theUE-HRI dataset [7] de-
livers information from a microphone array, cameras, depth
sensors, sonars, lasers, and user feedback captured through
the robot’s touchscreen. The lack of cPPG data in public
resources for rPPG engagement methods underlines the ne-
cessity for new datasets and unsupervised approaches.

This paper introduces the application of unsupervised
deep learning for calculating rPPG signals, an unexplored
modality in previous automated engagement analyses, em-
phasizing its practical, non-contact, and non-intrusive na-
ture. Furthermore, various behavioral feature sets are also
evaluated and fused with physiological features to further
boost the performance. The work is established on a
novel self-collectedEngagement Dataset, capturing real-
world online video meetings of social workers with con-
sultant therapists for the purpose of reducing work-related
stress. TheEngagement Datasetconstruction, the proposed
method framework, and experimental results are explained
in the following sections.
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3. Dataset construction

3.1. Data collection

The Engagement Dataset, which contains facial videos,
cPPG data, and engagement annotations, was collected
(Tab. 1). TheEngagement Datasetcomprises recordings
from group online video meetings. Serving as a re�ection
of participants’ everyday work, each online video meet-
ing was organized using the Zoom platform and involved
the participation of seven to nine individuals with one con-
sultant. These participants were social services employees
working with individuals facing mental health challenges
and substance abuse issues. Prior to each session, partic-
ipants were given detailed instructions on how to set up
their recording environment. To stream and record partici-
pants’ facial videos during online meetings, webcams were
installed, and OBS Studio was used. Throughout the ses-
sions, a research assistant provided online guidance using
Zoom Breakout Rooms. Participants were encouraged to
freely express themselves and move, as long as their faces
remained visible in the videos. The cPPG signals were cap-
tured using the Beurer 80 pulse oximeter. Following each
online video meeting, the facial videos and cPPG signals
were synchronized based on their timestamps.

3.2. Data annotation

Psychology students worked as research assistants to per-
form engagement annotation based on the observed behav-
ior of the target subject from face video. DARMA, a con-
tinuous measurement system, was used for engagement an-
notation. It synchronizes media playback and continuous
recording of observational measurement conducted with a
computer joystick at a sampling rate of 20Hz. The DARMA
software provided a continuous coding time series consist-
ing of two values per second [28], with 10 (�High Engage-
ment�) and -10 (�Low Engagement�). Research assistants
underwent training to familiarize themselves with distinct
engagement levels before starting the coding. Inter-rater
reliability in control sessions was good (correlation coef-
�cient over 0.8).

The scale of -10 to +10 facilitated a detailed understand-
ing of engagement, allowing for robust and nuanced anno-
tations. This range was chosen over a binary or three-point

Engagement labels [-10, 10], 2 labels/second
Engagement classes 3 (Low / Middle / High)
Participants (male/female) 25 (3/22)
Consultants (male/female) 2 (1/1)
Video recordings 109
cPPG data 106
Average duration 1 hr 23 min 58 sec
Total length 153 hours

Table 1.Engagement Datasetstatistics and properties.

scale because human emotional states and levels of engage-
ment are continuous and nuanced. The chosen range cap-
tures these nuances by providing a more granular scale. It is
broad enough to encompass the extreme ends of the engage-
ment spectrum while being �ne-grained enough to account
for slight variations within these extremes. Additionally,
this continuous scale can better account for individual dif-
ferences in engagement levels, allowing for the representa-
tion of each subject’s unique engagement signature.

3.3. Data statistics and properties

TheEngagement Datasetcomprises 24 recorded group on-
line video meetings, each lasting approximately 1.5 hours.
The Engagement Datasetcontains two modalities, namely
facial video recordings and cPPG signals. Each online
video meeting involved between seven to nine participants
and one consultant. The resolution of 1920 × 1080 and
the frame rate of 60 fps were recommended to optimize
video quality, although variations were observed due to dif-
ferent cameras and recording environments. TheEngage-
ment Datasetcontains several unique properties as opposed
to previous datasets studying engagement. 1)Duration
of data. With 1.5-hour videos compared to shorter pub-
lic clips, theEngagement Datasetenables in-depth engage-
ment analysis, uncovering evolving interactions, gradual
shifts in interactions, and group dynamics. 2)Group dy-
namics. Unlike earlier datasets, theEngagement Dataset
involves more participants per session, amplifying group
interaction complexities for better engagement analysis and
enhancing group dynamic insights. 3)Recorded cPPG sig-
nals. The presence of cPPG signals in theEngagement
Dataset, not presented in other datasets, underscores its
unique importance in advancing engagement estimation. 4)
Granular annotation. TheEngagement Datasetuniquely
adopts a -10 to +10 range of engagement, emphasizing the
�uidity of human responses. Such a spectrum effectively
captures engagement nuances often overlooked in other
datasets. 5)Real-world setting. Rooted in real-world sce-
narios, theEngagement Datasetshowcases authentic online
meetings of social service employees. Unlike other datasets
in simulated and well-controlled environments, theEngage-
ment Datasetpromises true engagement data pertinent to
real-world situations.

4. Method

4.1. rPPG curves reconstruction from facial videos

The proposed method is illustrated in Fig. 2. The original
videos are pre-processed to extract frames and acquire fa-
cial landmarks using the OpenFace library [6]. This tool
effectively addresses issues related to head motion, provid-
ing precise tracking of facial landmarks. The detected fa-
cial landmarks are employed to determine regions of inter-
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Figure 2. The diagram depicts engagement estimation based on heart rate variability (HRV) and behavioral features. HRV features
are calculated from reconstructed rPPG signals, and behavioral features are computed using the OpenFace library [6]. Feature-level
multimodality fusion is employed, followed by a classi�er.

est (ROI) on exposed skin areas. The faces are cropped and
then resized to dimensions of 128 × 128, preparing them
for input into the unsupervised Contrast-Phys model [44], a
computer vision-based technique, for the subsequent rPPG
curves reconstruction. The Contrast-Phys approach is based
on the principle where the utilization of a 3DCNN model
allows the derivation of multiple rPPG signals from distinct
spatiotemporal locations within each video. Two videos,
randomly selected from theEngagement Dataset, constitute
the input of Contrast-Phys. One video yields spatiotemporal
rPPG (ST-rPPG) blockP , rPPG samples[p1; : : : ; pN ], and
associated power spectrum densities (PSDs)[f 1; : : : ; f N ].
The other video provides ST-rPPG blockP0, rPPG sam-
ples [p0

1; : : : ; p0
N ], and corresponding PSDs[f 0

1; : : : ; f 0
N ],

following the same procedure. The contrastive loss pulls to-
gether PSDs from the same video while pushing apart PSDs
from distinct ones. Contrast-Phys implies that using rPPG
spatiotemporal similarity, the PSDs from the same ST-rPPG
block should resemble each other as follows PSD

�
P (t1 !

t1 + � t; h1; w1)
	

� PSD
�

P (t2 ! t2 + � t; h2; w2)
	

=)
f i � f j ; i 6= j and PSD

�
P0(t1 ! t1 + � t; h1; w1)

	
�

PSD
�

P0(t2 ! t2 + � t; h2; w2)
	

=) f 0
i � f 0

j ; i 6= j .
Subsequently, to bring together PSDs (positive pairs) from
the same video, the mean squared error is suggested to be
utilized as the loss function. When normalized based on the
total count of positive pairs, the positive loss term is:

L p =
NX

i =1

NX

j =1
j 6= i

�
k f i � f j k2 + k f 0

i � f 0
j k2 �

=
�
2N (N � 1)

�
(1)

On the other hand, the cross-video rPPG dissimilar-
ity suggests that the PSDs resulting from spatiotempo-

ral sampling of two separate ST-rPPG blocks will be dis-
tinct. This attribute for the two input videos is described
as PSD

�
P (t1 ! t1 + � t; h1; w1)

	
6= PSD

�
P0(t2 !

t2 + � t; h2; w2)
	

=) f i 6= f 0
j . Next, the task of dis-

tancing PSDs (negative pairs) from two different videos is
achieved when the negative mean squared error is used as
the loss function. Then, the overall quantity of negative
pairs is employed to normalize the negative loss term:

L n = �
NX

i =1

NX

j =1

k f i � f 0
j k2 =N 2 (2)

Finally, the overall loss function combines both positive
and negative loss terms:L = L p + L n .

The model is pre-trained on the Oulu Bio-Face database
[29]. This approach enables the reconstruction of rPPG sig-
nals in any recorded facial video, eliminating the need for
ground truth data in the future.

4.2. De�nition of observation window for HRV and
behavioral features

The -10 to +10 engagement scale is divided into three
classes - Low, Medium, and High engagement - through
a process designed to simplify the complexity of engage-
ment analysis while retaining a signi�cant level of detail.
This triadic classi�cation approach provides a balance be-
tween the -10 to +10 scale’s granularity and a binary scale’s
simplicity, serving as a practical and ef�cient method for
multi-classifying engagement levels. In High engagement
(Score: 10), the participant is either speaking, attempting
to take a turn, speaking over someone else, or, as a lis-
tener, actively showing engagement through minimal vo-
calizations (such as ’mmm’), nods, and/or facial expres-
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sions. In Medium engagement (Score: 0), the participant
either gazes at the speaker and appears to be listening, or
gazes away while still seeming attentive. Finally, in the
Low engagement (Score: -10), the participant gazes away
or has their eyes closed, appearing not to follow the con-
versation, possibly engaging in side activities like turning
away or opening emails. The process of converting contin-
uous engagement labels into three classes and de�nition of
observation windows for HRV and behavioral features (BF)
is detailed below.

A 5-seconds time period was chosen for detecting in-
tervals of stable engagement. Reliability risks arise from
short, context-lacking clips. Assessing longer clips is more
complex due to mixed engagement levels. Therefore, video
recordings were partitioned into 5-seconds intervals, and
the standard deviations of engagement were computed for
each interval. The median value of calculated standard de-
viations across the collectedEngagement Datasetwas sub-
sequently estimated. This median served as a threshold
for �ltering out 5-seconds intervals with higher engagement
standard deviations. This process excluded unstable inter-
vals with signi�cant engagement �uctuations. The engage-
ment values obtained from the �ltered intervals were clas-
si�ed as follows: -10 to 0 as ’Low engagement’, 0 to 5 as
’Medium engagement’, and 5 to 10 as ’High engagement’.
Example of engagement data of a speci�c participant in a
particular video meeting after �ltering process is shown in
Fig. 6 (see supplementary material). After the �ltering pro-
cess, the distribution of the samples was as follows: 4001
samples were categorized as ’Low Engagement’, 23069 as
’Medium Engagement’, and 8320 as ’High Engagement’.
Next, the midpoint of each 5-seconds �ltered interval be-
comes the center of an HRV and behavioral observation
window (Fig. 3). Subsequently, HRV features are computed
with a 60-seconds observation window that requires a 30-
seconds step in both directions, while BF is derived using a
2-seconds observation window following similar logic.

4.3. Feature extraction

HRV features. Reconstructed rPPG signals were pro-
cessed using the Neurokit2 library [32] to identify systolic
peaks. This allowed for inter-beat intervals (IBIs) calcula-

Figure 3. Observation windows concept for extracting BF and
HRV features in engagement analysis.

tion, yielding HRV features. These included three Poincar·e
plot features, 16 time-domain features, and �ve frequency-
domain features, making a total of 24 HRV features. The
impact of HRV observation window size on engagement es-
timation performance was investigated by extracting HRV
features from the reconstructed rPPG signals using various
observation window sizes (60, 90, 120, 150, 180, 210, and
240 seconds).

Facial expression features.Action Units (AUs) were used
for the computation of facial expression features [46]. 17
unique AUs were detected and tracked using the OpenFace
library [6] (see supplementary material Tab. 6). AUs were
represented in two ways: as intensity signals (on a scale
from 0 to 5) and as binary classi�cations for their pres-
ence or absence. Hence, 34 features were obtained, provid-
ing a comprehensive insight into engagement-related facial
movements.

Motion features. Four distinct sets of motion features were
extracted using the OpenFace library [6]. These included:
six gaze tracking features illustrating the 3D coordinates of
each eye’s gaze direction; two features representing each
eye’s gaze direction; 280 features outlining 2D and 3D land-
marks around each eye; and six features pertaining to the
translation and rotation of the head in 3D space. Collec-
tively, these 294 features provided a comprehensive exami-
nation of facial and eye movements associated with engage-
ment.

In the following, ’behavioral features’ (BF) denotes mo-
tion and facial expressions. These BF were computed for
each frame extracted from the collected video recordings.
To consider the temporal dynamics of these features, a 2-
seconds observation window was adopted, wherein the av-
erage value of each feature was computed.

4.4. Engagement classi�cation

Three-class classi�cation of engagement has been con-
ducted in two stages. In the �rst stage, classi�cation
was done using only 24 HRV features with various classi-
�ers. These included knn, Random Forest, AdaBoost, Cat-
Boost, xgboost, lightgbm, Support Vector Machine (with
’poly’, ’rbf’, and ’sigmoid’ kernels), Decision Tree, Gaus-
sian Naive Bayes, Quadratic Discriminant Analysis, Neural
Net, an ensemble of knn and Random Forest, and an en-
semble of xgboost and Random Forest. Out of these, the
knn and the ensemble of knn and Random Forest (knn+RF)
proved to be the most effective. In the second stage, these
two most effective classi�ers were employed. A feature-
level fusion technique was used to combine 24 HRV and
328 BF features into a single feature vector for a speci�c
5-seconds engagement interval, which was then fed into the
classi�er.
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5. Results
5.1. Experimental protocol

The Engagement Datasetwas split into 80% training and
20% test sets. To ensure model robustness and general-
ization, a 5-fold subject dependent cross-validation was ap-
plied to the training data. The trained model predicts out-
comes for the testing set. This protocol reliably measures
model performance while maintaining test set independence
[14]. Accuracy and the Receiver Operating Characteristic
Area Under the Curve (ROC AUC) metrics were initially
used to evaluate models. For the best performing mod-
els, the F1 score and confusion matrices were additionally
calculated to enhance the comprehensiveness of the assess-
ment.

5.2. HR measurement accuracy

For theEngagement Dataset, the HR from the reconstructed
rPPG signals was compared to that of ground truth cPPG us-
ing mean absolute error (MAE) and root mean square error
(RMSE) as evaluation metrics. An MAE of 5.15 bpm and
an RMSE of 7.81 bpm were obtained, indicating promis-
ing results given the uncontrolled conditions of the video
recordings. The SOTA performance [37] was marked by
MAE values of 3.55, 5.99, and 9.26 bpm in controlled lab
settings.

5.3. Short observation window HRV features for
engagement estimation

Utilizing a short observation window for HRV features
calculation, the proposed approach’s performance on the
DAiSEE [19] dataset (focused on students’ engagement)
and Engagement Datasetis shown in Tab. 2. For the
DAiSEEdataset with 10-seconds snippets, the highest accu-
racy of 54.49% was achieved by the Random Forest model.
Meanwhile, a 49.40% accuracy was yielded by the knn
model onEngagement Datasetusing a 10-seconds obser-
vation window. The performance of the proposed method
is constrained by the 10-seconds snippets of theDAiSEE
dataset. Reliable HRV features are not offered by such a
short observation window, a fact also re�ected inEngage-
ment Datasetperformance using a 10-seconds observation
window. Longer videos are required for robust HRV and en-
gagement estimation. This study’s video recordings allow
the proposed method’s capability to be fully realized using
long HRV observation windows. In the following subsec-
tion, the in�uence of HRV observation window size is ana-
lyzed in detail.

5.4. Effects of HRV observation window size on the
performance of engagement estimation

With the constraints of a 10-seconds observation window
addressed in the preceding section, the effects of HRV ob-

Method Accuracy [%]
DAiSEE[19]

InceptionNet Video Level [19] 46.40
InceptionNet Frame Level [19] 47.10
C3D Training [19] 48.60
In�ated 3D ConvNet [49] 52.35
ResNet + TCN (weighted loss) [2] 53.70
HRV + Random Forest 54.49
C3D FineTune [19] 56.10
C3D LRCN [19] 57.90
DFSTN [31] 58.84
C3D + TCN [2] 59.97
ResNet + LSTM [2] 61.15
ResNet + TCN [2] 63.90
Ef�cientNet B7 + TCN [40] 64.67
Ef�cientNet B7 + Bi-LSTM [40] 66.39
Ordinal TCN [1] 67.40
Ef�cientNet B7 + LSTM [40] 67.48

Engagement Dataset
HRV + knn 49.40

Table 2. Proposed method’s performance using short observation
window HRV features for engagement estimation based on two
datasets: (1)DAiSEE[19]; (2) Engagement Dataset.

servation windows of extended lengths are analyzed. The
experiments revealed that knn and knn and Random Forest
ensemble (knn+RF) were the most effective machine learn-
ing classi�ers. Models’ performance was assessed across
different HRV observation window values (Tab. 3). As the
HRV observation window size increased from 60 seconds
to 240 seconds, signi�cant improvements were observed in
the accuracy and ROC AUC scores for both models. At an
HRV observation window size of 60 seconds, the knn model
achieved an accuracy of 0.816 and a ROC AUC score of
0.870, while the knn+RF model showed slightly better re-
sults with an accuracy of 0.816 and a ROC AUC score of
0.906. At the optimal HRV observation window size of 240
seconds, accuracy of the knn model reached 0.937 and its
ROC AUC score peaked at 0.960, while the knn+RF model
outperformed with an accuracy of 0.940 and a ROC AUC of
0.983. The HRV observation window size has a signi�cant

HRV Accuracy [-] ROC AUC [-]
window [sec] knn knn+RF knn knn+RF

60 0.816 0.816 0.870 0.906
90 0.882 0.880 0.923 0.947
120 0.910 0.911 0.946 0.967
150 0.924 0.926 0.953 0.975
180 0.931 0.936 0.955 0.977
210 0.937 0.938 0.961 0.983
240 0.937 0.940 0.960 0.983

Table 3. Evaluation metrics of the knn model and ensemble of
knn and Random Forest model for engagement estimation based
on HRV features calculated at different values of HRV observation
window.

394



(a) Utilization of HRV features. (b) Utilization of HRV and Behavioral features.

Figure 4. Ensemble of knn and Random Forest model’s confusion matrices for engagement estimation (HRV observation window of 240
seconds) based on (a) HRV features; (b) HRV and Behavioral features.

HRV
window [sec] HRV HRV

+ BF (1)
HRV

+ BF (2)
HRV

+ BF (3)
HRV

+ BF (4)
HRV

+ BF (5)
HRV

+ BF (1+2)
HRV

+ BF (4+5)
HRV

+ BF (all)
60 0.816 0.864 0.855 0.861 0.896 0.919 0.856 0.928 0.930
90 0.880 0.903 0.902 0.870 0.936 0.931 0.891 0.942 0.929
120 0.911 0.929 0.929 0.881 0.952 0.944 0.919 0.952 0.934
150 0.926 0.934 0.936 0.884 0.953 0.944 0.927 0.954 0.940
180 0.936 0.937 0.944 0.892 0.954 0.947 0.932 0.955 0.938
210 0.938 0.939 0.944 0.896 0.955 0.951 0.933 0.958 0.941
240 0.940 0.943 0.949 0.899 0.956 0.956 0.934 0.960 0.940

Table 4. Ensemble of knn and Random Forest model’s accuracy for engagement estimation based on HRV and various sets of BF at
different values of HRV observation window. (1) stands for gaze tracking, (2) for angle of gaze direction, (3) for 2D and 3D landmarks of
speci�c points around each eye, (4) for translation and rotation of the head in 3D space, and (5) for facial Action Units.

impact on the performance of engagement estimation mod-
els and larger observation window sizes yield better results.
With longer observation windows, �ner and more complex
HRV patterns in the rPPG signals can be discerned, thus
enabling more accurate and robust predictions based on the
extracted HRV features. Moreover, noise and short-term
variability in the signals, which may confuse or degrade
the performance of the classi�ers, are better averaged out
over longer observation periods. Table 3 demonstrates that
a 120-seconds HRV observation window is already suf�-
cient for the proposed method to showcase its capability.
The confusion matrix of the model with the highest perfor-
mance is shown in Fig. 4a. A high differentiation is ob-
served among the three classes, slightly better at detecting
Moderate engagement than Low and High engagement. The
F1 scores for Low, Moderate, and High levels of engage-
ment are 0.92, 0.96, and 0.90, respectively. To improve per-
formance in Low and High engagement, the model requires
more balanced data or better features for class distinction.
All in all, the DAiSEEdataset’s 10-seconds clips prevent
an evaluation of the effects of HRV observation window
length on engagement estimation. Yet, from theEngage-
ment Dataset, it’s evident that HRV features can robustly
measure engagement when given a suf�cient observation
window size, such as 2 to 4 minutes.

5.5. Effectiveness of BF selection when fusing with
HRV for engagement estimation

While HRV features have established a strong foundation,
relying solely on physiological signals limits prediction ac-
curacy. Adding BF is crucial for improved metrics as hu-
man engagement involves not only physiological but also
subtle behavioral cues. Thus, a model fusing both physio-
logical and behavioral aspects could enhance prediction.

In Tab. 4, the ensemble of knn and Random Forest
model’s accuracy using both HRV and various BF combi-
nations, including (1) gaze tracking, (2) angle of gaze di-
rection, (3) 2D and 3D landmarks of speci�c points around
each eye, (4) translation and rotation of the head in 3D
space, and (5) facial Action Units, is shown. The ROC
AUC metric, mirroring the accuracy trend, was omitted.
The model’s performance is signi�cantly in�uenced by the
BF selection. Set (3) is found to be less ef�cient with longer
HRV observation windows; however, sets (4) and (5) are
shown to boost prediction accuracy. The highest perfor-
mance was observed when HRV was paired with (4), in-
dicating �translation and rotation of the head in 3D space�,
and (5), pointing to �facial Action Units�. Signi�cant met-
ric enhancement is observed when BFs are incorporated as
the model’s accuracy increases from 0.816 to 0.930 for a
60-seconds observation window. Enhanced performance



due to BF inclusion is consistently observed across all data.
Yet, the boost is more pronounced at smaller HRV obser-
vation window sizes. In Fig. 4b, the confusion matrix of
the knn+RF model, incorporating HRV and both (4) and (5)
BF, is presented, as opposed to the HRV-only feature confu-
sion matrix depicted in Fig. 4a. It outperforms the singular
HRV model, underscoring that the inclusion of BF yields
superior engagement estimation. After fusing with BF, the
F1 scores for Low, Moderate, and High levels of engage-
ment improved to 0.93, 0.97, and 0.94, respectively. Fur-
ther re�nement through enhanced feature selection or the
exploration of alternate models might offer improved dif-
ferentiation between Low and High Engagement.

5.6. Combining HRV observation window size and
BF set for engagement estimation

The effect of combining BF (4+5) set with different HRV
observation window sizes on the model’s performance is
shown in Fig. 5. As the HRV observation window size
increases, the performance metrics of the model tends to
improve, up to a certain point. However, the performance
improvement isn’t strictly linear and plateaus after a certain
HRV observation window size. In the knn+RF model with
BF (4+5), accuracy improves from 0.928 (60 seconds) to
0.960 (240 seconds), but the difference between 210 sec-
onds and 240 seconds is marginal. Thus, while the inte-
gration of BF improves the model, gains are notably larger
for smaller HRV observation windows. Nevertheless, with
the addition of BF, the best HRV-only model’s performance
was enhanced by 2%. Table 5 demonstrates the compari-
son of the proposed method with the method proposed by
Mohamadet al. [33] which is publicly available and aimed
for engagement estimation. TheEngagement Datasetwas
processed using their method, following the same protocol
and data split as described in Sec. 5.1.

Figure 5. Accuracy of the ensemble of knn and Random Forest
model for engagement estimation based on HRV and both (4) and
(5) BF calculated at different values of HRV observation window.
The accuracy of the model, based solely on BF, remains constant
due to its independence from the value of the HRV window.

Method Accuracy [-] ROC AUC [-]
Mohamadet al. [33] 0.633 0.500
HRV 0.940 0.983
HRV + BF (4+5) 0.960 0.991

Table 5. Comparison of methods’ performances for engagement
estimation based onEngagement Dataset. Ensemble of knn and
Random Forest model was used for �HRV� and �HRV + BF (4+5)�
methods.

6. Conclusion
The remote measurement of heart rate variability, along
with facial and body language recognition, is used for en-
gagement analysis in virtual meetings, which have become
increasingly popular over the recent years. This article pi-
oneers the application of unsupervised rPPG measurement
technology in estimating engagement during online meet-
ings. It �rst introduces theEngagement Datasetcentered
on social workers’ online video meetings. TheEngagement
Datasetis accompanied by granular engagement labels that
capture the essence of virtual meeting dynamics. Subse-
quently, the effect of HRV observation window size on en-
gagement estimation performance was assessed using both
collected and public datasets. Short HRV observation win-
dows proved to be unreliable for HRV feature calculation,
while longer observation windows (e.g., 2-4 minutes) pro-
vided a robust foundation for engagement estimation. Fur-
ther, the signi�cance of selecting the right behavioral fea-
tures set was evaluated. Given the crucial importance of
the right HRV window choice, a performance increase from
49.40% through 81.60% to 94% was witnessed when the
HRV observation window size was adjusted from 10 sec-
onds to 60 seconds and then to 240 seconds. Moreover,
when the correct BF set was used, performance was further
boosted by up to 2%.

In future, the proposed method is to be validated using
more datasets. With the formulated method, engagement
analysis at the clip level was carried out, setting the stage for
future entire video recording level analysis. Additionally,
exploration of engagement �uctuation on a group level, e.g.,
the analysis of synchrony or interactions of the participants,
is planned to better analyze the online event. Moreover,
this method is intended to be advanced into a deep learning
model, trained end-to-end for engagement estimation.
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