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ABSTRACT

The physiological parameters of breathing rate and heart rate have been used
for vital signs monitoring of the health status of the human subject for the
purpose of wellness. As a result, many sensors have been invented and
commercialized for the vital signs monitoring. However, the majority of these
sensors are contact based or on-body wearable sensors that are best deplored in
controlled clinical environments such as hospitals or home care for self-
monitoring. These contact based sensors are not suitable for real-life driving
situations as they cause distractions to the driver due to discomfort and they
encroach on the driver’s privacy. These inherent limitations in contact based
sensors have led to the surge in alternative non-contact or contact-less based
sensors of which the radar-based sensors have achieved some level of success
with respect to vital signs monitoring of human subject in a vehicle.
The objective of this work is to compare the breathing rate and heart rate

measurements from the millimeter wave radar-based sensor (Texas Instruments
77 GHz AWR1642Boost TI-mm wave sensor) used in vehicular environment to
the reference device (Zephyr Technologies BioHarnessTM 3.0), investigate the
impact of radar’s location and azimuthal orientation on the measured vital signs
from human subjects situated in an approximating vehicular environment and
comparing the results in different gender. The datasets of 5 volunteers (3 males,
2 females) captured from 24 measurement scenarios were pre-processed with
bandpass filter of 0.1 to 0.6 Hz and 0.8 to 4.0 Hz respectively. The spectral
evaluation of the filtered signal using the peak interval and Fast Fourier
Transform (FFT) were used for the vital signs estimation of volunteers. The
statistical analysis of the datasets showed weak correlation between the radar-
based sensor and the reference device with the p ≤ 0.05 occurring in the
breathing signal only. The Bland Altman plots showed that the radar device
overestimated the breathing and heart rates by -5.75 bpm and -7.23 bpm
respectively from the reference device due to the presence of outliers. However,
the confidence intervals with respect to the zero bias equivalence line validates
the interchangeability and good measurement precision of the radar device with
the reference device. The vital signs results of all volunteers were comparable
within the normal range of 40 to 120 bpm and 5 to 35 bpm for the heart and
breathing rates respectively. The range of tilt angles 0o to 45o of the radar-based
sensor impacted positively on the accuracy of measured physiological
parameters via increase of signal to noise ratio and the highest signal quality is
detected at the tilt angle of 30o.

Keywords: millimeter wave, radar-based sensor, vital signs monitoring,
performance metrics, non-contact sensor.
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1. INTRODUCTION

In many countries of the world, majority of the population on daily basis spend
approximately more than one hour commuting or driving a vehicle on the road [1, 2].
Hence, in recent times it has become imperative to monitor the physiological
parameters of the driver to ascertain the health status or well-being in order to reduce
injuries or deaths due to the prevalence of road accidents caused by stress, fatigue
and drowsiness [3]. The World Health Organization (WHO) in 2020 ranked Finland
at number 168 with 215 or 0.44% total deaths recorded from road accidents [4].
Physiological parameters are biosignals produced as a result of bioelectricity,
mechanical and heat effects during respiration [5]. These different effects underline
the principles of measurement of the different technique approaches. Bioelectricity is
observed as surface potentials on the body when the cardiac muscles are excited
electrically and this is measured through electrocardiogram (ECG) electrodes or the
non-invasive capacitive-coupled ECG (cECG) electrodes. The mechanical effects are
observed as the displacement or deformation of body structures or fluids within the
thoracic cavity which are measured as surface displacement via radar,
ballistocardiography (BCG), seismocardiography (SCG) and camera or video motion,
and also as fluid impedance in the thoracic cavity measured as perfusion via
photoplethsmography (PPG), photoplethsmography imaging (PPGi), or thoracic
impedance through magnetic induction [1, 5]. The heat transfer of conduction or
convection between organs and fluids can be measured through thermography [6, 7].
The physiological parameters of a human being provide first-hand information
about the health status of an individual and it can be monitored through the breathing
rate, heart rate or pulse, blood pressure, temperature of the body and oxygen
saturation. The health monitoring is mostly done under controlled environment of
clinical setting or home care through contact based methods such as ECG, PPG,
BCG, magnetic induction and thermography. These contact based or on-body
wearable sensors are not ideal for long term monitoring due to discomfort, as such
many research studies have embarked on non-contact or contact-less based
monitoring [2, 5]. Non-contact based sensors are apt for long term health monitoring
as well as beneficial for patients with sensitive skin (premature babies or burn
victims), elderly patients and critically sick ICU patients or COVID patients [8]. The
commonly used measurement technique approaches for remote health monitoring of
a driver in simulated/controlled laboratory or real vehicular environments are radar,
BCG, ECG electrodes, cECG electrodes and thermography via camera or video
motion [1]. These contact-less sensors used for driver health monitoring in vehicular
environments are either integrated/embedded, attached to car upholstery (seat,
steering wheel, seat belt, chassis) or mounted on rear view mirror/side mirrors [1, 2,
5]. However, Leem et al. [9] opined that given the comparative advantage, radar
sensors are ideal for non-invasive or contact-less monitoring in vehicular
environments since privacy infringements and discomfort of the driver are
ameliorated. Furthermore, radar sensors are not susceptible to varying levels of
illumination, they can penetrate through non-metal objects (walls or clothing) and
they overcome the challenges of dead spots in camera-thermal sensors [2].
Radio waves are electromagnetic waves with very high frequencies which are used
for remote radar sensing. The radar was invented by the German inventor named
Christian Hülsmeyer in 1904 for collision avoidance between sailing ships detected
during a foggy weather [10]. Radar is acronym for Radio Detection and Ranging
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made popular by the military in detecting enemy aircraft, ship or armory and used
during the second World War (1939 to 1945) [11]. Radar-based sensors used for
non-invasive or non-contact vital signs monitoring rely on the radar principles where
electromagnetic waves in the microwave or millimeter wave band are emitted from a
transmitting antenna directed towards the thoracic cavity of the individual person and
the reflected wave from the chest is captured as echo signals at the receiving antenna.
The echoes or reflected waves are shifted in phase or frequency from the transmitted
frequency due to the periodic mechanical displacement of the organs inside the
thoracic cavity such that the extrapolation of the heart rate and breathing rate can be
estimated [5].

1.1. Motivation

The earliest applications of radar-based sensors for vital signs monitoring emerged in
the 1970s for detection of apnoea on a premature baby with a 10 GHz radar sensor
mounted on an infant incubator [12]. Vinci et al. [13] in 2015 used two 24 GHz radar
sensors separately for two measurement scenarios in a vehicular environment: the
first scenario had the radar sensor positioned on the dashboard at 0.5 m distance in
front of the driver and the second radar sensor was embedded or attached to the back
of the driver’s seat. Over the years to present the applications of radar-based sensor
deployed in automotive industry have been geared towards the health monitoring of
the driver, driver’s safety and comfort which comprises of occupant presence
detection, advanced driver assistance system (ADAS), in-cabin child detection, smart
vehicle monitoring and recognition of gestures [1, 2].
In literature, several studies on driver vital signs monitoring either in laboratory
setting or real life driving scenarios have focused more on the accuracy of the
measured physiological parameters rather than other applications specific to safety or
comfort of the driver [2]. The accurate estimation of vital signs parameters
potentially can be used for early detection of cardio-pulmonary diseases, cardio-
vascular diseases, neurological disorders and their clinical management [1]. The high
frequency millimeter wave radars are miniaturized, easily integrated inside the
vehicular environment due to small-sized antennas [14] and can reliably to some
extent estimate the physiological parameters of a driver [8]. However, the millimeter
wave radars also suffer from the challenges of light of sight or other propagation
drawbacks [14, 15], artifacts due to body movement [5], signal attenuation and
multiple path interference which degrades the measurement accuracy especially the
weak heart rate signals [16]. The improvement in vital signs estimation accuracy can
be achieved by ameliorating the artifacts from body movements either by hardware
or sophisticated signal processing algorithms [5, 16]. The multiple input and multiple
output (MIMO) configuration of millimeter wave radar (used in this thesis) with
many receiver channels offers high angular resolution that mitigates the multiple path
interference [16] and makes possible the simultaneous monitoring of several persons
[8]. The line of sight challenge as per placement of the radar-based sensor inside the
vehicle for good signal quality (minimal interruption in signal path between radar
sensor and human target) was investigated by Yang et al. [17]. Out of the 16 different
positions/locations, the rear view mirror was found to have optimal signal quality.
The main aim of this thesis which is one of the following research questions asked
(second question) is to investigate the impact or effect of angular placement or
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positioning of the radar-based sensor on the breathing rate and heart rate accuracy as
it is yet to be determined in literature. The research questions are as follows:

1. Are the results from the reference and radar devices comparable?

2. What are the impact or effects of the radar’s location and angular orientation
with respect to the measured physiological parameters?

3. Are the measured physiological parameters comparable amongst all subjects?

The experiment was conducted in the laboratory with the dimensions and geometry
of the vehicular environment factored in the experimental setup. The 77 GHz radar-
based sensor AWR1642Boost (Texas Instruments) positioned or mounted on a tripod
was placed from the human target at different locations, distances (vertical/horizontal)
and corner or angular measurements for optimal performance assessment.
The thesis structure is organised in the following order. Chapter 1 gives an
introductory overview of the various measurement techniques used for vital signs
monitoring with highlights on the radar sensor and the motivation for the study.
Chapter 2 focuses on the literature review in relation to viz-a-viz general theory of
radar, fundamental block diagram, types of radar, electromagnetic spectrum with
respect to the different frequency bands of radar, commercialized vital signs
monitoring using radar sensor, basic principles of high frequency modulated radars,
the derivation of the physiological parameters from radar sensing systems, related
previous research studies with emphasis on the signal processing algorithms and
ground truth or reference devices used in the experiments as well as the challenges of
radar sensing systems in driver-centered health monitoring. Chapter 3 discusses the
materials and methods in terms of the devices(system model of devices), software
and data processing used in this study. Chapter 4 gives the presentation of results
obtained from the experimental procedure. Chapter 5 discusses the results with focus
on the practical applications, limitations of the results and study. Chapter 6 discusses
the conclusion and future directions. Chapter 7 and Chapter 8 contain the references
and appendices respectively.
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2. LITERATURE REVIEW

Unobtrusive, non-invasive and wireless monitoring of the heart rate and breathing
rate of an individual has continued to be a keenly researched topic area because of
the huge potential benefits of enhancing healthcare and quality of life. The health
monitoring of breathing rate and heart rate can provide early detection or diagnosis
of cardio-vascular or cardio-pulmonary disorders, sleep apnoea, stress, fatigue or
depression. Recent WHO statistics estimated 1.19 million persons die from road
accident injuries [18]. Hence, it is imperative to ascertain the health status of
motorists in order to reduce the rates of road accidents, injuries and deaths [2]. The
literature review examines the earlier related studies on the vital signs monitoring of
a driver using radar-based sensors with broad frequency range of microwave or
millimeter wave conducted either in experimental setups (approximated vehicular
environments) or in real-life driving scenarios. The review is sectioned into three
parts namely: Section 2.1, 2.2 discusses the overview of general theory of radar,
radar sensor block diagram, frequency bands of radar in the electromagnetic
spectrum and its applications, Section 2.3, 2.4 highlights the different types of radar
and their advantages, basic principles of millimeter wave frequency radar and the
derivation of vital signs parameters are discussed, Section 2.5, 2.6 focuses on the
related works and the challenges of radar sensing systems in vehicular vital signs
monitoring.

2.1. General Theory of Radar

The German inventor Christian Hülsmeyer in 1904 received a patent for his sensing
device which was based on the principles of radar. The generated radio waves
transmitted through one antenna was reflected from ships in close proximity and
detected at the receiver antenna. His sensing device called telemobiloscope was
mainly used to prevent the collision of ships in foggy weather [10]. The radio waves
used for detecting or sensing an object’s location was first named “Radar” by the US
military (US Navy) in 1940 and used during the second World war to target enemy
aircraft or ship [19]. The foremost radar sensor produced through research for the
automotive industry dates back to more than four decades ago [20]. In 1998, for the
first time the radar was deployed in a commercial vehicle for adaptive cruise control
functionality which was later expanded to avoiding collisions on the road [20].
However, for vital signs monitoring, the authors in [12] mounted a radar sensor on an
infant incubator for monitoring the physiological parameters of a pre-term baby in
1971.
Radar-based sensors make use of wireless sensing technologies which are largely
used to detect the motion and velocity of object(s). Thus, the radar-based sensors can
determine the object’s position, shape, motion characteristics and trajectory [20]. The
general theory of radar is based on the radio detection and ranging principles of
which antennas (trans-receiver) emit waves in the microwave or millimeter wave
range directed towards the target and receives back echo signals reflected from the
target. These echo signals contain information from the target that is being processed
to obtain the target’s speed, distance, angle and movement directions. This is
possible because of the changes in the signal that is reflected from the target as an
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echo signal to the sensor, the difference in the signal changes between the
transmitted and received is used to identify the target and its position [20, 21, 22].

2.1.1.Radar Sensor Block Diagram

The typical block diagram of an automotive radar sensor in Figure 1 has been
extended to medical applications. Some of the research work or related studies have
the typical configuration. However, others have integrated different active circuits
with the trans-receiver sensor for the purpose of optimization and achieving high
signal to noise ratio (SNR) of the output measured signal.

Figure 1. Automotive radar block diagram [21].

The typical automotive radar sensor architecture consists of the following
components:

 Voltage-controlled oscillator (VCO): The voltage-controlled oscillator is
mainly used to generate the output signal whose frequency changes with the
amplitude of voltage for an input signal with reasonable frequency range
[21].

 Power Splitter: The power splitter also known as the power divider is
responsible for dividing a single radio frequency (RF) line and splitting the
power [21].

 Power Amplifier (PA): The power amplifier changes signals from low
power to higher power signals [21].

 Signal Processing: The signal processing circuit modifies, synthesizes and
analyzes signals [21].

 Mixer: The mixer converts the feeble RF signals from the low noise
amplifier into intermediate frequency (IF). It is used for the generation of
frequency’s sum and differences which are applied to it [21].
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 Low Noise Amplifier (LNA): It is an amplifier that amplifies the feeble RF
signal received from the antenna. The output from the LNA is fed into the
mixer [21].

 Pulse Repetitive Frequency (PRF): The pulse repetition frequency is the
number of pulses of a repeating signal within a specified time usually
measured in seconds [21].

 Antenna: The antenna system comprises of the transmit and receive
channels. The transmit channels drive and provide beam steering
capabilities to different antennas. The multiple receive channels provide
angular information about the target which is possible due to the phase
difference between signals received by different receive antennas [21].

2.2. Electromagnetic Spectrum

2.2.1.Frequency Bands of Radar

The electromagnetic spectrum consists of electromagnetic waves or radiation in the
broad range from two extremes of long radio waves to the short gamma rays which
are categorized into different bands either by frequency or wavelength in increasing
or decreasing order of magnitude [23, 24]. The electromagnetic radiation contained
in the different bands of the electromagnetic spectrum differs from one band to
another by virtue of their interaction with matter and their applications [23]. The
broad range of electromagnetic spectrum consists of the following:

 Radio waves
 Microwaves
 Infrared light
 Visible light
 Ultraviolet light
 X-rays
 Gamma rays

The millimeter wave electromagnetic radiation falls between the electromagnetic
spectrum band of microwaves and infrared having the frequency range of 30 GHz to
300 GHz. It further extends to the lower portion of the frequency range of 0.1 THz to
30 THz in the terahertz domain [27], occupying the extremely high frequency band
according to International Telecommunication Union (ITU) [23, 25, 26]. The ITU is
an organization that oversees both generation and transmission of different frequency
bands in the electromagnetic spectrum in compliance with local regulatory laws of
respective countries [30]. Figure 2 shows the frequency bands of radar with emphasis
on the portion of millimeter wave band in the electromagnetic spectrum. The
frequency bands of the radar especially the millimeter wave differs in penetration
capabilities with respect to their frequency range and applications [26, 28, 29].
According to the Institute of Electrical and Electronics Engineers (IEEE), the
classified frequency bands of millimeter waves are inclusive of some portions of the
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microwaves frequency bands. The IEEE classified frequency bands are important for
radar remote sensing, terrestrial mapping and satellite surveillance applications [30].
These frequency bands are highlighted as follows:

(a) Microwaves frequency bands

 L -Band (1 to 2 GHz)
 S -Band (2 to 4 GHz)
 C -Band (4 to 8 GHz)
 X -Band (8 to 12 GHz)
 Ku -Band (12 to 18 GHz)
 K -Band (18 to 27 GHz)
 Ka -Band (27 to 40 GHz)

(b) Millimeter waves frequency bands

 Ka -Band (27 to 40 GHz)
 V -Band (40 to 75 GHz)
 W -Band (75 to 110 GHz)
 Mm or G -Band (110 to 300 GHz)

Wavelength (m)

Frequency (Hz)

Figure 2. Millimeter wave band portion in electromagnetic spectrum [26].

2.2.2.Applications of Frequency Bands of Radar

The frequency bands of radar differ in frequency range and its applications [14].
However, in the millimeter wave band, the bands dominantly used in the field are the
V- band, E - band and W- band which are application specific due to their frequency
range [14] and to overcome any interference [2]. In the automotive industry the

3GHz 30GHz

100GHz
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microwave band (24 GHz) and millimeter wave band (60 GHz, 77 GHz) categorized
in the short-range, mid-range and long-range sensing capabilities are commonly used
for (inside and outside) in-cabin monitoring [2]. Currently, there is a growing trend
towards the production of portable, miniaturized radar-based sensors (for easy
integration) with high sensitivity or detection accuracy of object’s location which
favours the use of 77 GHz millimeter wave radars in vehicles for applications of vital
signs monitoring, ADAS for safety and comfortability of the driver [2, 14]. Although
the 24 GHz and 77 GHz radar sensors are used externally for out-cabin monitoring,
due to the bulky arrays of the antenna (affected by size of aperture), poor spatial
resolution limited by low bandwidth, high consumption of power and noise on
microwave 24 GHz radars [14], as earlier mentioned, there is a switch to the 77 GHz
millimeter wave radars which is predominantly in use in most vehicles. The V-band
frequency range of 60 GHz radars are non-licensed by Federal Communication
Commission (FCC) [14]. These radars are used internally for in-cabin monitoring [2],
an example is the Infineon XensivTM 60 GHz used for in-cabin child detection [40].
The short range of the V-band find application in fast data transfer, high definition
(HD) multimedia streaming, wireless communication, object presence detection and
vital signs monitoring [14]. The E-band range is used in traffic control around
vehicles, ADAS for comfort and safety of drivers. The W-band are used for active
imaging in robotic controls, land mapping or surveillance, security scanning and
monitoring devices, detecting cancers or malignant cells and physiological
parameters monitoring [14]. In general, the frequency bands of radar find application
in many fields such as long range tracking or surveillance, terrestrial mapping,
satellite surveillance, mining, weather observations, traffic control, quality assurance
detectors in manufacturing industries, gesture recognition, ADAS in automobile
industry, health monitoring, cancer and tumour detection in healthcare industry, air-
borne traffic control, security and surveillance at the airports and many more [14, 19,
20, 21, 31]. Table 1 highlights some Texas Instruments radars with their frequency
bands and ranges.

Table 1. Frequency bands and ranges of Texas Instruments Radars [31]

Texas Instrument Radar Frequency Band Frequency Range
IWR6843AOPEVM V 60 to 64 GHz
IWR1843 E 76 to 81 GHz
AWRL6432 V 57 to 64 GHz
AWR1843AOPEVM E 76 to 81 GHz
AWR1642BOOST E 76 to 81 GHz
IWR1642 E 76 to 77 GHz
IWR1443 E 77 to 79 GHz
AWR1443 E 76 to 81 GHz
IWRL6432 V 57 to 64 GHz
AWR2243BOOST E 76 to 81 GHz
AWR1243 E 76 to 81 GHz
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2.3. Types of Radar

There are different types of radar-based sensors depending on their function,
properties, and application [32, 33]. Most health monitoring of driver(s) found in
literature depend on the different radar types which is a function of the mode of wave
propagation or transmission of the wave to the human target and purpose of
investigation [32, 33]. The major radar sensing types shown in Figure 3 used in vital
signs monitoring are Impulse radio ultrawide band (IR-UWB) radar, Continuous
wave (CW) radar and Frequency Modulated Continuous wave (FMCW) radar.
Although, not so popular is the variant of the FMCW radar known as Step Frequency
Continuous wave (SFCW) radar [22, 32, 33]. The SFCW radars transmit incremental
multiple discrete frequencies in a continuous wave [22, 32]. High frequency range in
the microwave (6 to 24 GHz) and millimeter wave (30 to 300 GHz) are preferably
used because of their benefits of miniaturization of components and easy integration,
high resolution of target detection (at short source-target distance) as the phase
modulated echo signals at the receiver antenna are proportional to the micro-motions
of the organs in the thoracic cavity [5, 32, 33].
There is a trade-off between lower frequency bands and high frequency bands.
Extremely high frequency millimeter waves are susceptible to signal loss or
attenuation at long-distances such that the SNR is degraded, range of detection is
reduced, and detection accuracy is greatly affected. However, lower frequency has
high penetration capabilities for long-distance applications but low resolution with
poor detection accuracy due to low bandwidth and spatial resolution [5, 20, 33].

Figure 3. Types of Radar sensor.

IR-UWB radars transmit repeating short radio pulses with wide bandwidth which
provides good spatial resolution of objects, high speed and data rates in
communication devices. The pulses are transmitted at PRF such that the echo signals
reflected from the object are detected between the intervals of transmitted pulses.
The ultrawide band operates in the 3.1 to 10.6 GHz range in compliance with the
FCC regulations [5, 33, 34].
CW radar-based sensor has the frequency unmodulated but transmit and receive
waves simultaneously and continuously such that the shift in frequency is used to
compute the speed or distance of the object [20, 33]. However, the FMCW radar-
based sensor unlike the CW radar-based sensor has frequency modulation of waves
which is time dependent known as chirp. It is based on triangle wave’s law where
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both the transmit and receive signal have the same triangle wave and same matching
frequency but there is time difference between them. The time difference enables the
distance calculation of the object [20, 21].
The FMCW radars also use frequency shift keying (FSK) which transmits and
receives signals alternately between two frequencies to detect objects [20, 21, 22].
However, there are so many modified/enhanced versions of the sensors that have
birthed a lot of variants from the FMCW radars. This modification is possible
because they transmit and receive waves based on Doppler effect such that the carrier
frequency is selectively modulated for specific applications [5, 21, 22, 32]. For the
1D-CW radar, objects can be detected through their speed. There are different
configurations of FMCW radars such as 2D FMCW (FSK) radar which makes use of
a transmitter antenna and receiver antenna to detect objects through their speed and
distance without the angle or azimuth information [22]. However, the 3D and 4D
MIMO FMCW radars have special multiple arrays of transmitters and receivers such
that multiple objects with the same speed, distance and angle can be tracked and
localized in 2D or 3D space respectively due to enhanced spatial resolution and
reduction of interference [22].

2.3.1.Advantages of Radar Sensing Systems

CW radars have simple hardware designs and are cost effective but because of the
low detection range, they are mostly used in short distance applications.
Unfortunately, they are unable to detect multiple objects and object localization due
to their poor range and spatial resolution. CW radars are affected by interference
which reduces the SNR of the measured vital signs parameters [32, 33]. Although the
IR-UWB radars are excellent for long distance and through the wall applications
because of their high penetration capabilities, they are also less prone to interference
of which the human target can be located in a buried structure or collapsed building
but have limited low frequency range that requires bulky antennas or more complex
hardware [5, 32, 33]. However, the FMCW and SFCW radars are widely used as
they can track multiple objects and localize objects due to their high velocity and
range resolutions [33]. In this thesis, the FMCW radar is used in the experimental
procedure.

2.4. Basic Principles of FMCW Radar

In the working principle of the 77 GHz AWR1642Boost shown in Figure 4, the chirp
generated is transmitted by the Tx antenna which is reflected from the thoracic cavity
of the human target and captured as frequency modulated chirp at the receiver
antenna that is a replica of the transmitted chirp but with a delay time td. The
transmitted Tx chirp and received Rx chirp are both mixed in the mixer to produce a
baseband or IF also called the beat frequency. The IF undergoes further signal
processing for the vital signs estimation [35].
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Figure 4. Basic principle of FMCW radar [35].

2.4.1.Derivation of Vital Signs from Radar Sensing System

The time of travel of the transmitted chirp from the Tx antenna to the human target
and received at the Rx antenna which is similar to the echo signals can be used to
determine the distance or range (R) of the human target from the radar is given by the
equation:

td = 2R/c (1)

where R is the distance of the human target to the radar, c is the speed of light and
td is the time delay.
The time delay is significant in observing the phase shift of the frequency received
at the Rx antenna. Because the frequency modulated sinusoid of the Tx chirp given by
the expression

s(t) = A cos (2π fc t + (πB/Tc) t2 + Ø(t)) (2)

where A is the amplitude, fc is the starting frequency, Tc is the duration and Ø(t) is the
phase of signal.
On reaching the thoracic cavity of the human target is reflected and the received
signal is shifted in phase with a time delay such that the Rx chirp has the form :

r(t) = α A{cos(2π fc (t-td) + (πB/Tc) (t-td)2 + Ø(t-td))} (3)

Both the transmitted Tx chirp and received Rx chirp are mixed and filtered in the
mixer component to produce a single IF or baseband or beat signal which is a
function of time having the frequency and phase portions given by the expression
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s(t) * r(t) = A cos(2π fb t + Øb(t) + δØ(t)) (4)

fb = 2BR/cTc, and Øb(t) = 2π fc td + (πB/Tc) td2 (5)

where A is the amplitude of signal received at Rx antenna, fb is the frequency, and
Øb(t) is the phase.
However, the δØ(t) phase component is the residual noise that is negligible for short
distance applications. Thus, the periodic micro-motions of the chest or displacement
of the thoracic cavity can be estimated from the phase variations of the detected
human target range to the radar where the Fast Fourier Transform (FFT) algorithm is
applied on the IF to extract the phase measurements for vital signs estimation. The IF
sampling rate is obtained from the number of analog-to-digital converter(ADC)
samples per chirp such that the ith ADC sample per jth chirp is expressed in the form:

s(t) * r(t)[i,j] = A cos(2π fb i Tf + (4π/λ)R (i Tf + j Ts)) (6)

where Tf is the fast time axis taken after the periodic intervals of ADC samples, Ts is
the slow time axis which is used for the estimation of vital signs because the small
displacements of the chest which modulates the breathing rate is less than 4 Hz.
Therefore, the breathing rate and heart rate are extrapolated from the slow time axis
of the FFT of which the frame consists of two chirps and the first chirp is used for
processing of physiological parameters with the sampling frequency related to the
repetitive periodic intervals of the frames in FMCW radar systems.

2.4.2.Commercial Vital Signs Monitoring Systems

Contact-less methods of health monitoring of driver’s vital signs are still attracting
an ongoing surge of high interest. However, some levels of success have been
recorded in its application in the automobile industry as some leading brands have
proprietary licence of these approaches which comes as ADAS with different brand
names such as Driver alert control in Volvo, SmartSenior in BMW and Attention
Assist in Mercedes-Benz [5]. Most of the ADAS are mainly integrated into the
upholstery of the vehicle and not as stand-alone units [36]. The review work in [1]
highlighted that the embedded sensors in current automobiles, apart from the
beneficial safety features and comfort they offer, the physiological data acquired can
be used for behavioural assessment of the driver which might have some health
implications. The commercialized stand-alone vital signs monitoring systems are
largely contact based with cables, electrodes, and consumables (gel) used in
clinically controlled environments which are of impractical use in vehicular
environments. The notable brands of contact based vital signs monitoring systems
are General Electric (GE), Philips, Mindray, Schiller, Welch Allyn and many more
are used in hospitals [37].
Conversely, the non-invasive or non-contact stand-alone unit built for commercial
vital signs monitoring are namely:

(i) Vital Signs Radar Aerosense Wavve: It is a light weight, smart radar
sensing device which can detect heart rate, breathing rate, stress levels and sleep
disorders operating at 24 GHz FMCW range with the bandwidth of 3 GHz
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detection range of 0.3 to 2.5 m, power consumption 5 volts/1 ampere or 110
volts (can use both battery and AC power supply) [38].

(ii) GF Technovation non-invasive vital sensor: The patented technology uses
the IR-UWB radar emitting ten million pulses per second within 10 m2 area. It
monitors the heart rate, breathing rate and movement by continuous scanning of
the time-of-flight of the signal. It is portable and needs AC power supply,
product specifications are available upon request from their website [39].

(iii) Infineon XENSIVTM Radar sensors: The Infineon’s XENSIVTM radar
sensors range from 24 GHz, 60 GHz and 77/79 GHz millimeter wave, meeting
the demand for short, mid and long-range radar sensing capabilities. Infineon
XENSIVTM radar sensors are used in the automotive industry for ADAS,
autonomous driving functionalities and sensing. However, XENSIVTM 60 GHz
radar sensor additionally offers multi-functional novel in-cabin monitoring of
child detection, multiple target detection and localization, vital signs monitoring
of breathing rate and heart rate which are configurable with excellent security
features. XENSIVTM 60 GHz radar sensor operates on 4 GHz bandwidth of
FMCW radar with a MIMO array of transceivers. It has low consumption of
power, compact design, good thermal stability, free of maintenance, highly
accurate measurement and robust to exogenous vehicular factors such as engine
vibration or body movement. The long-range XENSIVTM 77/79 GHz radar
sensor is located on the front chassis of the vehicle for detecting far distant
objects [40].

(iv) Xander Kardian: The Xander Kardian XK300 radar sensor comes in
different varieties with different field of view depending on the site location such
as beneath the desk or ceiling mounts. The UWB radar sensing system with
proprietary signal processing algorithm is commercially available for the vital
signs monitoring, presence and motion detection in residential and clinical
environments. It can be used with battery, plug in power module or
communication module supporting wireless and Long term evolution (LTE)
communication platforms [41].

2.5. Related Work

In literature, the CW radar sensor in the microwave frequency range is dominant
owing to their low cost and simple hardware design. However, the other radar types
like IR-UWB, FMCW and SFCW were also used to ascertain for vital signs
estimation in vehicular scenarios [33]. We will discuss the related works in the
aspects of the different technologies used with regards to the signal processing
methods for vital signs estimation and placement of the radar-based sensor in the
vehicle to improve accuracy as well as the verification of results with ground truth or
reference devices. The challenges or limitations of radar-based sensors in vital signs
monitoring will also be examined.
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2.5.1. Signal Processing Methods

In most literature, the research interest of vital signs monitoring in vehicular
environments have largely revolved around detection accuracy or the accurate
estimation of the breathing and heart rates of the driver which has the potential for
clinical applications in terms of early prediction of underlying health
disorders/diseases, accurate diagnosis, treatment and management. Hence,
researchers have concentrated on solutions geared towards the reduction or possible
elimination of noise, interference or signal attenuation which invariably affects the
signal quality or accuracy of the measured physiological parameters.
Gharamohammadi et al. [2] in their review work recommended for future directions
the use of advanced signal processing algorithms that can resolve the phase
unwrapping and harmonic non-linearity or discontinuities inherent in radars,
placement of the sensor and choice of frequency range can effectively improve the
accuracy of the vital signs estimation. The authors in [42] re-echoed the idea of using
MIMO millimeter wave radars and machine learning algorithms to ameliorate issues
of interference or harmonics which impacts negatively on detection accuracy and
accurate estimation of vital signs.
Dai et al. [16] mentioned in their study, that improvement in accuracy of the
breathing and heart rates can be achieved through increase in the SNR via hardware
in terms of the antenna design or sophisticated signal processing methods. Although,
directional antennas such as horn improved the SNR of the vital signs parameters but
the radar’s field of view is decreased and makes it unsuitable for monitoring several
people [16]. Additionally, two antennas on a single radar can be made to mimic the
function of a repeater by re-transmitting a transmitted signal [5]. The range
resolution is focal to the accurate determination of vital signs parameters which is
based on sensor to object distance. Thus, in a recent study in [98], a novel algorithm
targeted towards vital signs accuracy in FMCW radars was developed. The authors
reiterated two areas in which the accuracy of vital signs estimations can be enhanced:
precise range bin selection and advanced signal processing algorithms for
eliminating noise for accurate estimation of vital signs.
The placement of radar-based sensors have also been explored in some studies to
ascertain positions or locations inside the vehicle with least interference in signal
path from radar sensor to human target which can result in improved signal quality
devoid of loss or attenuation of signal. In the study [13], Vinci et al. used two 24
GHz CW radar sensor with a 6-port array placed in two different locations inside the
vehicle for health monitoring of the driver. The first radar sensor was placed on the
dashboard at a distance of 0.5 m with the antenna directed at the driver’s chest. The
other position has the radar sensing system integrated on the backside of the driver’s
seat with the antenna directed at the driver’s back. Similar work was embarked upon
by Lee et al. [43], where a 24 GHz CW radar sensor was integrated at the backside of
the driver’s seat whereas Izumi et al. [44] integrated the 24 GHz CW radar sensor on
the seat belt in front of the driver’s chest. Similarly, Schires et al. [45] integrated a
commercially patented UWB radar sensor known as Ventricorder impulse radar with
operating frequency of 3.9 GHz on the backside of the driver’s seat. Different
locations or positions for radar-based sensors have been suggested in literature as
ideal for good signal quality which are steering wheel, dashboard or control panel or
cockpit, seat belt, rear view mirror and backside of the driver’s seat [1, 2, 5].
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Apart from embedding a 24 GHz CW radar at the backside of the driver’s seat, Lee
et al. [43] in real-life driving scenario used the multiple signal classification (MUSIC)
algorithm to mitigate the artifacts due to body movement and vibration from the
vehicle which readily corrupts the weak heart rate signals. A high accuracy of heart
rate estimation was achieved with error rate less than 3 beats per minute (bpm)
compared with the ground truth devices of ECG and PPG in three different scenarios
(stationary vehicle, moving vehicle at 60 km/h and 80 km/h respectively). Park et al.
[46], used the Labview controlled data acquisition board DAQ for sampling both
outputs of the proposed sensing system or resonators (consisting of two VCOs) and
the ground truth sensors which were fed into a digital signal processing unit in the
computer. In the raw data captured, the harmonics of the breathing rate interfered
with the heart rate such that it was difficult to extract the data separately. Thus, the
raw data was fed to a digital bandpass filter with cut-off frequency in the range 0.3 to
2 Hz and 1 to 2 Hz for the extraction of the breathing rate and heart rate respectively.
The spectrograms through short-time Fourier transform (STFT) was done for real-
time visualization of the results. The results from the resonators were selected after
the post processing such that the resonator with expected consistent values was
chosen which is dependent on the inverse proportionality of the changes in the
derivatives of the reactance of the resonator with distance. The proposed sensing
system in [46] was attached to the seat belt and steering wheel and evaluated
alongside two reference sensors UFI- Model 1010 (piezoelectric pulse transducer)
[47] and UFI- Model 1132 Pneumotrace IITM (piezoelectric respiration transducer)
[48] in both static and moving vehicle environment with one male and one female
driver respectively. Although, the distance between the driver and the proposed
sensing system on the steering wheel was 37 cm, there was similarity and strong
correlation in the results of the proposed sensing system and the reference sensors
irrespective of the driver’s gender.
The study in [17] proposed a novel offline and online signal processing methods
where 2-minutes of breathing were acquired from each participant in driver’s seat
with the radar in 16 different positions alongside the ground truth of a PPG sensor
placed on the driver’s finger. Each participant mimics the regular driver’s motion
during the data acquisition for 3 times for the offline signal processing. In the offline
signal technique, a customized narrow bandpass filter and peak detection algorithm
were used for the extraction of the breathing rate in breaths per minute (bpm). The
online signal method was designed for real time vital signs monitoring. The
maximum peak value in frequency domain was multiplied with a moving sliding
window in 60 seconds time frame. The moving sliding window is same in
functionality with the moving target indicator (MTI) for respiratory harmonic
cancellation [60]. The sliding windows were constructed for the various respiration
situations: stationary normal breathing, normal breathing with driving movement and
combination of normal, fast and slow breathing with driving movements. The data
analysis on the raw data acquired showed that the online signal processing technique
gave a better performance and accuracy than the offline signal processing technique
when it involved variations in the breathing rates of the participants with optimal
signal performance of the radar situated at the rear view mirror and the backside of
the driver’s seat. However, in [49], after the linear interpolation was done to
eliminate the discontinuities in the signal caused by the RF switching between the
echo signals, the Ensemble Empirical Mode Decomposition (EEMD) algorithm was
used for the signal processing and extraction of intrinsic mode functions (IMFs) of
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the breathing rate and heart rate for multiple subjects simultaneously which improved
the SNR as well as the accuracy.
There are some related works with experimental setup in controlled non-vehicular
or indoor environment conducted using millimeter-wave range radar sensing system
with significant insights [50, 51, 52]. Xiao et al. [50], proposed a Ka-band radar
which was positioned at a constant distance of 0.5 m directly opposite the subject
that performed normal breathing and reference pulse sensor placed at the index
finger of the subject was used as ground truth during the measurement. The IF or
baseband output signals from the mixer were filtered and signal processed with the
4th-order butterworth band filter in the 0.1 to 0.7 Hz and 0.9 to 3 Hz range for the
recovery of the subject’s breathing and heart signals respectively. The butterworth
filter is a bandpass filter designed to have a ripple-free, maximal flat frequency
response which depends on the additional number of reactive elements (such as
resistors, capacitors and inductors) in the filter design circuit and then attenuates to a
zero level in the bandstop frequency [53, 54]. There are n-order of butterworth filters
determined by the number of reactive elements used in the circuit [54]. The 4th-order
butterworth filter frequency range can be varied to detect abnormal heart rate by
windowing the filtered baseband signals and autocorrelation. The autocorrelated
signals are transformed in the frequency domain through FFT to generate the
abnormal breathing rate and heart rate of the subject. The data analysis showed that
the vital signs of the subject correlated with the results of the ground truth of which
the detected heart rate was in line with the 2 % of reference range as per the heart
rate accuracy calculations. However, Chuang et al. [51] had one subject positioned in
four different orientations (front side, back side, left side and right side) during the
measurement at a distance of 1 m recorded for every 20 seconds interval from the
radar sensing system. The subject holds his breath during measurement. The
breathing rate and heart rate are captured in both time and frequency domains. The IF
output signals from the V-band mixer undergoes further amplification and bandpass
filtering for analogue-to-digital conversion into spectral waveforms at the recorder.
No specific signal processing algorithms were mentioned in [51]. However, the
application of the mathematical formula for receiver sensitivity in communication
was adopted for use in data analysis. The breathing rate and heart rate were detected
at dominant peaks of 0.3 Hz and 1.4 Hz respectively amongst the smaller observed
peaks which are harmonics of these signals. The two scenarios of normal breathing
and breath holding were compared and strong breathing rate was detected in the face
frontal orientation than from the lateral positions of the subject. Also the amplitude
of breathing signal was higher than the heart signal in the same given scenarios. The
vital signs of both the human subject and the bullfrog were monitored in [52]. In the
study, the vital signs of the human subject were monitored for every 25 secs interval
for first normal breathing and holding of breath for 20 secs at a distance of 2 m from
the sensing radar while the bullfrog was used because of the effect of the radar cross
section (RCS) of a subject which reduces the received power proportionately. The
application of the signal processing algorithm, complex signal demodulation (CSD)
was used to recover the target’s vital signs of the human and bullfrog from the
quadrature baseband signals. The results were well correlated with the results from
the ground truth of pulse oximeter.
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2.6. Challenges in Radar-Based Vehicular Vital Signs Monitoring

The major challenges which affect the SNR and detection accuracy posed in radar-
based sensors used for vital signs monitoring of a driver during real life driving
situations are as follows:

 Movement artifacts caused by the vibrations from the vehicle engine and
body movements of the driver can induce a micro-motion Doppler effect on
the operating frequency, which are observed as noise interference masking
the physiological parameters [5].

 The extremely high frequency signals suffer significant signal attenuation at
far distances as a result there will be increase cost on additional hardware
for millimeter wave sensing [59]. The intrinsic null points in the sensor
architecture, where signal loss is prominent due to phase cancellation or
destructive interference of the transmitted operating frequency and
frequency at the receiving antenna. The null points occur repeatedly at every
half wavelength of the measured signal such that the signal of the heartbeat
is detected at an optimum point and null point interchangeably.

 Interference from clothing material worn by the driver can reduce the SNR
of the measured signal as rough surfaces scatter the signal more towards the
receiver antenna than smooth reflective surfaces that reflect the signal away
from the receiver [56].

 The high frequency millimeter wave radars suffer from line of sight
challenges where the signal path from the radar sensor to human target is
obstructed by objects which results in signal loss or attenuation which
invariably reduces the SNR of the measured signal [14].

 Inability of the radar to discriminate or distinguish the vital signs signals
contained in the beat signals or phase data [32] detected at the optimal point.
As a result, valid measurement of the physiological parameters are missed
or not captured. This issue occurs when the amplitude of movement or
vibrations (which do not reflect the vital signs) are equivalent to the
wavelength of the operating frequency of the radar [55]. Hence, there is
need to control the amplitude or phase waveform of the radar [57] which is
analogous to template matching filtering. The proposed algorithm in [55]
which is a modified differentiate and cross multiply (DACM) processing
algorithm uses an accumulator which replicates the function of an integrator
in a digital circuit that takes the input signal and converts to a triangular
wave. The triangle waves do no have harmonics except the single
fundamental frequency. However, their waveforms show odd harmonics in
the series of equal spaced maximum and minimum points, so they find
application in control systems that require precision control [61].

 The FMCW radar systems have intrinsic challenge of phase noise
generation from the output of the mixer that affects the range resolution as
well as the vital signs estimation based largely on the range correlation
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principle. The range correlation principle has to do with source (radar sensor)
to object (human subject) distance which has direct proportional relation
with the phase noise such that increase in the range, results in the increase in
phase noise which affects the range resolution due to the alternate
generation of null and optimum points as the distance increases [27, 56].
The effects of the intrinsic phase noise of radar sensing systems on vital
signs signals are pronounced in long-distance applications [55, 58].
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3. MATERIALS AND METHODS

3.1. System Model

3.1.1. Texas Instruments 77GHz AWR1642Boost

Texas Instruments (TI) radar systems for vehicular environment are miniaturized
CMOS based chips consisting of small sized patch antennas (virtual arrays for
transmitters and receivers), RF front end, electronics and digital control board made
possible by the high frequencies in the millimeter wave band at which they operate.
The 77 GHz AWR1642Boost in Figure 5 is configured as an FMCW MIMO radar
which transmits electromagnetic waves continuously where frequency increases
linearly with time called chirp. The chirp parameters are the start frequency fc,
bandwidth B and duration Tc where the slope gives the ramping of the frequency with
time. It consists of two transmitter antennas Tx and four receiver antennas Rx thereby
increasing the resolution of human target distance or range, velocity and angular
measurements [62].

Figure 5. Texas Instruments AWR1642Boost Evaluation Module.

3.1.2. Zephyr Technologies BioHarness 3.0

The Zephyr Technologies BioHarnessTM 3.0 is a device using Bluetooth low energy
(BTLE) technology for telemetric monitoring of physiological parameters of ECG,
heart rate, breathing rate, body postures and physical activity of an adult for purpose
of wellness. The device is powered internally by a rechargeable lithium polymer
battery and inserted into a receptacle on a chest strap which is worn by the human
target. The physiological parameters are wirelessly captured and transmitted via
Bluetooth to an external configured device with proprietary software such as a laptop.
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The Zephyr technologies BioHarnessTM 3.0 [63] in Figure 6 is used as a reference
device for correlations in measurement performance in the experimental setup of the
thesis.

Figure 6. Zephyr Technologies BioHarnessTM 3.0 Device.

The TI millimeter wave 77 GHz AWR1642Boost ES 2.0 evaluation module (EVM)
mounted on a tripod in the experimental setup shown in Figure 7 has two transmit
antennas and four receive antennas with a digital signal processing programmable
core, low power Arm® R4F controllers, and on-chip memory. The radar sensor has
operating frequency of 77 GHz to 81 GHz with a starting frequency of 77 GHz,
bandwidth of 4 GHz and duration of 50 μs [62]. The vital signs estimation and
waveforms of the heart rate and breathing rate are displayed on the PC-GUI software
platform on the configured laptop.

Figure 7. Experimental setup: Human target has to be still for 10 to 15 seconds and at
a distance of 0.8 m from the radar at rotation (azimuthal) angle 0o and tilt angle 0o
respectively.
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3.2. Experimental Setup

The experiment was conducted in the laboratory with estimated dimensions of
vehicular environment factored in the experimental setup shown in Figure 7. There
were five healthy adult volunteers (3 males and 2 females) used for the study. Before
the measurement or collection of data from the human target, the purpose of the
experiment and the procedure to be followed were explained to each volunteer. The
informed consent form was filled and signed by each volunteer. The height and
circumferential diameter measurement of each volunteer was taken. Table 2 shows
the information of the participants.

Table 2. Human Subject Information

Subject Height (cm) Circumferential
diameter (cm)

Subject1 (Male) 173 105
Subject2 (Female) 168 71
Subject3 (Male) 172 85
Subject4 (Male) 178 95
Subject5 (Female) 173 102
Average + SD 172 + 3.56 91.6 + 13.85

The instructions provided for the measurement include the following:

 All items on the clothing of the human target that can cause distraction are
removed.

 The human target is trained on how to power on the Zephyr module inserted
into a receptacle on the chest strap and properly strapped or fastened on the
body of the human target with the correct positioning of the pressure sensor
pad on the chest strap moved to the left side of the rib cage just slightly
below the sternum for good contact and sensitivity to the variations of the
diaphragm displacement.

 The human target with hands folded and relaxed is seated on a car seat
positioned on the front side of the radar sensor with its antenna array
directed toward the human target.

 For the first measurement, the human target is expected to remain still for 10
to 15 seconds to enable the application to be calibrated and for repeated
measurements, the human target will be still for 5 to 10 seconds. However,
the Zephyr Technologies BioHarnessTM 3.0 device when powered on, starts
logging data of biosignals into the internal memory. As a result in order to
synchronize or threshold the two sensor signals, the human target was
instructed to tap his/her chest 3 times before measurements were taken. The
chest tapping was used as an event marker for synchronization.
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3.2.1. Parameters of Measurement

There are important measurement parameters required to obtain the precise location
of an object or human target in space with the use of the radar sensor. In addition, the
transmission of series of set of chirps or frames and the signal processing algorithms
applied to the captured phase variations of the transmitter and receiver antennas
makes feasible the estimation of vital signs parameters. The measurement parameters
used in the measurement setup attached in the appendix are:

 Range: The range is measured on the basis of time as it is the measured
horizontal distance of the radar sensor from the human target.

 Elevation/Depression Angle: The upward or downward angle measured
from the horizontal to the line of sight from the observer to the human target.
In the case of the measurement setup, the depression angle (tilt angle of
radar) is considered.

 Azimuth Angle: This is the orientation of the human target’s presence in
space with respect to clockwise or anticlockwise movement about a certain
reference axis based on a convention that the North is taken as the reference
axis with 0o and all azimuth angle measurements are done with respect to
the North in a clockwise manner such that the East has 90o, South has 180o,
West has 270o and back to North with 360o or 0o.

During measurement, there were 24 different measurement scenarios involving the
variations of the distance (horizontal and vertical) and angular measurements of the
millimeter wave radar sensor AWR1642Boost with respect to the human target. Here,
it is assumed that the horizontal distance (range) approximates the front side of a
vehicle with the steering wheel, dashboard, cockpit, side view mirrors, side doors,
back seats and the perpendicular/vertical height approximates the rear view mirror,
car ceiling, and corner points in the car. The millimeter wave radar sensor
AWR1642Boost was rotated around the human target in a clockwise manner at some
rotation angles of 0o, 45o, 90o, 135o, 180o, 225o, 270o, 315o approximating the
perimeter dimensions of the car or vehicular environment as well as the field of view
of the radar sensor. In addition, the radar sensor was aligned at different
depression/tilt angles of 0o, 30o and 45o. The millimeter wave radar sensor
AWR1642Boost can take measurements both at the front and backside which is
selected on the PC-GUI software platform.
The unknown quantity of the tilt angles used in the measurements in Figure 8 were
derived from simple triangulation [64] and trigonometric calculation such that either
the distances between objects or angles between them can be computed. These were
applied in the measurement setup in Figure 9. The azimuth is an angular
measurement in spherical coordinate system and it is the angle between the
perpendicular projection of the object of interest and the known baseline. The
principle of triangulation states that if all the three angles and the length of one side
of a triangle are known, then by trigonometry the lengths of the remaining sides of
the triangle can be calculated [65]. Also, if the coordinates of any vertex of a triangle
and azimuth of any side are known, then the coordinates of the remaining vertices
can be computed [66]. Already, the horizontal distance, that is, the distance of the



29

millimeter wave radar sensor AWR1642Boost from the human target either on the
front side or backside is predetermined and known as the baseline in the experiment.
The baseline ranges from 0 cm to 80 cm. We can determine the perpendicular or
vertical height of the radar sensor from the floor which varied from 85 cm to 150 cm
(through the extension of the tripod stand) and the tilt angle with the formula:

Perpendicular distance(h) = base(b) * tanθ (7)

Or

θ = arctan(h/b) (8)

Figure 8. Triangulation Principle.

Figure 9. Experimental setup showing circular path of motion of the radar sensor
around the target and at the backside.
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3.3. Data Collection

The data collection on 5 volunteers consisting of 3 males and 2 females for purpose
of variability in dataset already provided in Table 2 was conducted for the study. The
measurement procedure lasted for approximately 2 hours for the total of 24
measurement scenarios per participant. The first 5 measurement scenarios lasted for
3 minutes each while the remaining scenarios lasted for 2 minutes each. For every
specific distance, for example, horizontal distance of 80 cm and perpendicular
distance of 85 cm for the millimeter wave radar sensor AWR1642Boost from human
target is kept constant and the angular measurements of rotation (azimuthal) angles
and tilt (depression) angles are varied as data is being captured. A protractor was
used to measure the tilt angles from the marked baseline on the tripod where the
millimeter wave radar sensor AWR1642Boost was positioned vertically at 0o to the
horizontal and tilted forward from the reference point of 0o to align with the different
tilt angles of 30o and 45o.
The Zephyr Technologies BioHarnessTM 3.0 device can be configured by either
wirelessly transmitting data via Bluetooth or logging the data without transmission
into an internal memory or both modes are applicable. In the study, the device was
configured to internal memory for collection of data of which the proprietary
software for Zephyr Technologies BioHarnessTM 3.0 produces the raw data as
external .csv files of general data, summary and waveforms of all the measurements.
The raw data from the millimeter wave radar sensor AWR1642Boost (EVM) was
captured through the USB data port configured on the Texas Instrument proprietary
software PC-GUI on a laptop and stored in a database created in \gui_exe folder as a
dataOutputFromEVM. bin file. These .csv files and .bin files from the Zephyr
module and radar sensor respectively, were imported into the Matlab software for
further processing and data analysis.

3.4. Data Processing

In most literature, the signal processing of radar data for vital signs estimation are
mainly done in either time or frequency domains or both. However, there are other
several algorithms relying on numerical methods, machine learning and
mathematical models that have also been used for the estimation of vital signs and
improvement on measurement accuracy [16, 32]. The prevalent methods used for
analysis in time and frequency domains, are the peak detection and FFT techniques.
The vital signs estimation acquired from the AWR1642Boost radar device through
the embedded signal processing algorithm is displayed as heart rate and breathing
rate values on the proprietary PC-GUI interface on a configured laptop. The signal
processing algorithm of peak detection and FFT are applied on the baseband or IF
signal output from the mixer. The IF signal contains both the range and vital signs
information that can be extrapolated from the radar system parameters in 2D matrix
format of fast time interval axis and slow time interval axis. The fast time interval are
obtained from the number of ADC samples per chirp or ADC sampling for the range
estimation such that when FFT is applied, the exact distance of the human target
from the radar can be estimated. Conversely, the slow time interval are obtained from
the periodic repetition of the number of chirps or frames per second. The phase
variations between the transmitter and receiver antennas in successive frames can be
detected when FFT is applied for the vital signs estimation. However, the Nyquist
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sampling theorem greatly influences the resolution of both the range and vital signs
estimation since the maximum sampling frequency must be higher than 2 times the
rate of sampling or sampling frequency to prevent signal distortion or aliases. Hence,
the theorem imposes measurement boundaries on the range estimations through the
ramping bandwidth B and the periodic intervals of the frames for the vital signs
calculations respectively [36, 58]. The frequency for vital signs estimation range
from 0.1 to 4.0 Hz, thus, the sampling frequency for slow time interval is 20 Hz as
captured in the radar system parameters in Table 3.
In the data processing steps, after the initial range estimations in frequency domain
are determined, they are proceeded by extraction and unwrapping of phase from each
corresponding range bins via the arctangent demodulation (AD) algorithm. The
differences in the phase undergoes bandpass filtering in the frequency range of 0.1 to
0.6 Hz and 0.8 to 4.0 Hz for the breathing rate and heart rate signals respectively.
The spectral evaluation of the vital sign signals in frequency domain are performed
with peak detection and FFT. However, due to the susceptibility of the weak heart
rate signal to be corrupted by the breathing harmonics or body movement, the
embedded signal processing algorithm has threshold mechanism that discards invalid
values and places the valid values in a buffer for peak detection, autocorrelation and
FFT to estimate the heart rate [67]. The implementation of the signal data processing
block diagram in the 77 GHz AWR1642Boost radar sensor is shown in Figure 10.

Table 3. Extrapolation of Vital Signs from Radar system parameters [67]

Radar system Parameters Nominal values
Bandwidth, B 4 GHz
Starting Frequency, Fc 77 GHz
Slow time axis sampling, Fs 20 Hz
Fast time axis sampling, Fs_fast 2 MHz
Samples per chirp, N 100
Chirp duration, Tc 50 μs

Figure 10. Block diagram of signal data processing of AWR1642Boost radar sensor
[67].
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3.4.1. Pre-processing

The data collected from each human target was simultaneously stored in both
reference Zephyr and radar devices. The raw ECG data with the sampling frequency
of 250 Hz from the Zephyr device was used for the manual alignment or
synchronization of the vital signs parameters acquired from both devices because the
chest tap event marker can be observed as visible sharp burst or peak for each
scenario with respect to the time of occurrence. The raw ECG waveform versus time
plot for Subject 1 in Figure 11, showed successive sequence of chest tap event
markers for each measurement scenario and their respective time of occurrence. An
example of the chest tap event marker zoomed in the raw ECG waveform versus
time for the measurement scenario 4 is displayed in Figure 12. The respective time of
occurrence of the chest tap event marker on the raw ECG waveform is used for
segmenting the physiological parameters of heart rate and breathing rate respectively
from the Zephyr device. The pre-processing step of merging the two datasets from
reference device and radar sensor required the need to have the same sampling
frequency for the purpose of feature extraction or data analysis. The ECG-derived
heart rate from the Zephyr device is sampled at 1 Hz, whereas the vital sign signals
from the radar device are sampled at 20 Hz respectively. Hence, heart rate and
breathing rate from the radar device with the higher sampling frequency of 20 Hz
were averaged at 20 values to 1 second to the equivalent sampling frequency of 1 Hz
same as the signals from the Zephyr device. The averaged radar data were manually
merged or aligned with the Zephyr data with respect to the time of occurrence of the
chest tap event for each measurement scenario. Some samples were cut off from the
Zephyr data for merging the two dataset signals with the same time vector. Figure 13
shows the two merged datasets with the same time vector. The pre-processing
procedure was done on the Matlab 2023 software.

Figure 11. Raw ECG waveform versus Time plot from Zephyr device.
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Figure 12. Zoomed raw ECG waveform versus Time plot showing sharp burst or
spike of chest tap event marker for measurement scenario 4 for Subject 1.

Figure 13. Manually synchronized Zephyr and Radar datasets for measurement
scenario 4 in Subject 1. The Breath rate and Heart rate in bpm units.

Raw ECG waveform
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3.4.2. Statistical Analysis

Different measures of dispersion tools and performance metrics were deployed in the
statistical analysis of the datasets which seeks to provide insights to the research
questions outlined in the introduction section.

Bland Altman Plot: The Bland Altman’s plot is a graphical tool to measure levels of
agreement between two devices with different measurement techniques of the same
event such as the breathing rate and heart rate. The comparison of two different
measurement techniques of same parameter(s) gives room for occurrence of
measurement errors or systematic bias. Hence, the plot focuses on the mean
differences (bias) and the limits of agreement (Standard Deviation (SD) + 1.96). The
recommendation is that 95 percent of the sample data points should lie within + 1.96
SD of the bias which gives the upper and lower bounds of the limit of agreement.
The evaluation of the measure of dispersion from the mean and limits of agreement
provides the comparison or agreement level between the two different devices or
measurement techniques such that the two devices can be used interchangeably, if
there exists extremely low or zero bias and strong levels of agreement. The closer the
sample data points are to the mean, the stronger the agreement but the farther the
sample data points are from the mean and limits of agreement, the weaker the
agreement between the two devices or measurement techniques [68]. However, in
[69] the author emphasizes that the interpretation of the Bland Altman’s plot should
be based on the evaluation of the mean deviations between the two devices rather
than agreement levels which might be erroneous. The logic behind the agreement
level is based on the assumption that there is equivalence of results of same
parameter obtained from two different measurement techniques provided the
summation of the mean deviations equals to zero which rarely occurs in reality.
The sample data points in Bland Altman’s plot with the 95 percent confidence
interval of the mean deviation is presumed to be Gaussian which is dependent on the
large size of the sample data. Hence, the bell-shaped distribution of the sample as a
requirement for interpretation must be validated through some statistical test methods
[69]. However, in real cases where the requirement is unattainable, the interpretation
of the Bland Altman’s plot can be evaluated based on the 95 percent confidence
intervals of the mean deviations and limits of agreement of which the reliability of
the results or measurement precision and statistical inference on population basis can
be extrapolated. The width of the confidence intervals of the mean deviations and
agreement levels determines the measurement precision which depends on the size of
the sample data such that the larger the size of the sample data, the narrower the
width with high precision and vice versa. The Bland Altman analysis scatterplots
typically assumes the normality of sample distribution such that the larger the sample
size, the narrower the widths of the confidence intervals which in most cases are
preferred [69]. It is vital to determine a priori the sample size required for
comparability studies [96]. Lu et al. [81] developed a template or framework for
computation of the sample size determination such that with the minimum sample
size calculated, the measurement accuracy obtained will be the exact replica of large
pool of sample size. The framework is based on statistical inference theory used for
the power analysis calculations of the sample size under varying settings of
parameter via a priori known or determined set limits of standard parameters of alpha,
beta, mean and standard deviation of the differences between the two measurement
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techniques and the clinically acceptable limit or threshold. In [81], the author offered
a superior argument to the proposed estimation of sample size by Bland which is
drawn from the width of confidence interval and lacking in high level of statistical
power [97], whereas in their experimental procedure, Monte-Carlo simulations were
performed to validate the proof of concept of the framework with the achievement of
high statistical power of 80 percent.
Although, Bland Altman’s plot does not infer the acceptance of the mean

deviations as standard except a predetermined standardized value prescribed by
regulatory body can be used to validate the confidence intervals. According to the
American National Standards Institute for cardiac monitoring devices, the
measurement accuracy of heart rate must lie within + 10 % or + 5 bpm deviation
based on which one is greater [70].

Pearson Correlation Coefficient: The correlation coefficient is a statistical method
used to show similarities or linearity in the relation between two features or
parameters which is expressed as a value or coefficient ranging from -1 to +1. It
evaluates the strength or magnitude of association and direction between the results
obtained from the reference and radar devices via the range of coefficient values to
either have a positive or negative correlation or none. The interpretation of the
Pearson’s correlation coefficient is based on line fitted regression and the decision
rule of statistical significance of the p-values with p ≤ 0.05 satisfying the null
hypothesis of significant relationship of the results from both devices [71].

Error Analysis Tools: The assessment of the measurement accuracy will be
implemented via the commonly used performance metrics of mean absolute error
(MAE) or mean absolute deviation (MAD), root mean square error (RMSE) and
mean absolute percentage error (MAPE). The comparison amongst these error
analysis tools with provide valuable insights on the validation of the measured results
to be used for possible clinical prognosis.
The MAPE is a performance metrics that measures the deviation of a model’s
prediction from the mean which can be equated to the percentage of MAE/MAD. It
is defined as the average absolute percentage difference between predicted outcomes
and the actual outcomes/ground truth [72, 73]. The MAE/MAD performance metrics
simply measures the mean of the absolute errors without the percentage. Both MAPE
and MAE/MAD are robust to outliers and non-differentiable of different errors due
to the absolute function that renders opposing signed errors positive. Thus, the errors
are equally weighted and these performance metrics linearly increment with rise in
errors [74]. Conversely, the RMSE performance metrics is susceptible to outliers, as
such blows up the mean errors making them larger since it measures the square root
of the mean squared error. Hence, for the RMSE performance metrics larger errors
are weighed more and penalized [75]. The variability in errors can be assessed by the
simultaneous use of the RMSE and MAE/MAD in error analysis, since usually the
RMSE ≥ MAE/MAD. If RMSE is higher, the larger the difference between them, the
larger the variability of the each error within the observations or measurement data
else there is similarity in the magnitude of errors [75].

Coefficient of Variation: The coefficient of variation (CV) is a statistical tool that
measures the dispersion of the sample data points from the mean which is given as a
ratio of the SD to the average or mean multiplied by 100 percent as it is expressed in
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percentage. It measures the variability between two datasets with
different scales of measurement or units of different measurement techniques [76,
77]. The higher the CV, the greater the dispersion from the mean resulting in lower
measurement precision and vice versa.

Signal to noise ratio: The SNR can be derived from the inverse of CV. It evaluates
the quality or strength of signal with respect to the interference levels or noise in the
measured signal [77]. The signal quality increases with higher SNR and vice versa
and it is measured in decibels (dB). The SNR values calculated from the CV are
converted to decibels with the 10log10(mean/SD) [78].
The computation of the SNR will provide insights into the design functionality and
performance since the SNR depends on the transmission power, noise figure of the
receiver, chirp duration, number of chirps in a frame, the antenna gain pattern of the
transceiver and the RCS of the human subject or target which measures the
magnitude of energy reflected by the human subject [79].
In addition, the angle at which the radar device makes with the horizontal
equivalently relates to the radar’s field of view (FOV) such that the radar’s tilt angle
of 0o equates to 90o FOV which will be viable for the assessment of its impact or
effect on the accuracy of the measured physiological parameters. Table 4 shows the
tilt angles with their corresponding FOV while Table 5 displays the summary of the
measurement scenario with respect to their associated tilt angles.

Table 4. Tilt angles with their corresponding Field of view values

Tilt Angle (degrees) Field of View (degrees)
0 90
30 60
45 45

Table 5. Summary of Measurement scenarios with respective tilt angles

Measurement Scenarios Tilt Angle (degrees)
Scenario1 0
Scenario9 45
Scenario17 30

Scenario2 0
Scenario10 45
Scenario18 30

Scenario3 0
Scenario11 45
Scenario19 30

Scenario4 0
Scenario12 45
Scenario20 30
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Scenario5 0
Scenario13 45
Scenario21 30

Scenario6 0
Scenario14 45
Scenario22 30

Scenario7 0
Scenario15 45
Scenario23 30

Scenario8 0
Scenario16 45
Scenario24 30

Boxplots: The boxplot statistical tool is used to analyze the variability or spread in a
grouped data via the range and interquartile range (IQR). The range reveals the
spread of the entire data, and it is the difference between the highest number and
lowest number in the dataset whereas the IQR reveals the spread of the middle 50 %
of the data, which is the difference between the upper and lower quartiles. The
boxplot divides the data into four equal parts of 25 % each or quartiles [80].
The Bland Altman’s plot, Pearson’s correlation coefficient and error analysis tools
(performance metrics) were used to answer the first research question while the
coefficient of variation, signal to noise ratio and boxplots were used to answer the
second and third research questions respectively. The Microsoft Excel was used for
the statistical analysis and data visualization.
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4. RESULTS

The total number of 5 human subjects consisting of 3 males and 2 females
participated in the study with 24 measurement scenarios observed for approximately
2 hours for each participant. During the course of measurement, there were
interventions of adjusting the level of the tripod (mounted with the radar device) for
the different stages of measurement involving the varying vertical heights of 85 cm,
130 cm and 150 cm as well as positioning of the human subject and the angular
orientation (tilt angle) of the radar device. The expected total of 120 paired
measurement data points from 24 measurement scenarios were reduced to 118 paired
measurement data points due to missing data for measurement scenarios 23 and 24
for Subject 1 as the rechargeable battery on the reference Zephyr device had gone
flat during the period of measurement for those scenarios. Thus, in order to avoid
biasing the data, these missing values were excluded from the computation of the
statistical analysis.

4.1. Bland Altman Analysis

Heart Rate

The Bland Altman analysis of the physiological parameters from the Zephyr and
radar devices were analyzed to assess the agreement and systematic errors between
the two devices for the individual human subject. For lack of space in displaying
each Bland Altman plot of human subject per scenario, the mean deviations and
limits of agreement of the physiological parameters for all human subjects per
scenario were averaged to compute the overall mean deviations and limits of
agreement used for the Bland Altman’s plot in Figures 14 and 18. In Figure 14, the
data visualization of the heart rate scatterplot for majority of the subjects per scenario
lie within the 95 percent confidence interval alongside some outliers from either or
both side of the limits of agreement. It also showed a general trend or proportional
bias from high to low values with low systematic errors or bias such that the
scatterplots are closer to the mean which means strong agreement between the two
devices whereas dispersion of sample data points from the mean are largely observed
at extreme low or high values which are outliers generated from the radar device.
However, in most of the Bland Altman’s plots for each human subject per scenario
showed the scatterplots with low and extremely high biases(in some cases) in the
physiological parameters which lie within the 95 percent interval for many of the
scenarios. There is a remarkable trend in the increase or decline of values in the
dataset depicted as proportional bias which impacts on the measurements. An
example is the Bland Altman plots of the physiological parameters for Subject 1 in
scenario 1 as shown in Figures 15 and 16 in the appendices. The heart rate
scatterplots exhibits a trend from high to low values with low bias while the
breathing rate with a high bias (in most cases low bias), exhibits random scatterplots
reflecting the consistent differences in the measurement between the two devices.
Similarly, this general trend is replicated in the remaining human subjects for most
scenarios except for the heart rate in scenario 7 for Subjects 3, 4, 5 and scenario 14
for Subjects 2, 3 respectively which showed the trend from the lowest to highest
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values. This inverse trend is captured in Figure 17 for Subject 3 in scenario 7. The
occurrence of proportional bias can be adduced to the proportional variation between
the differences and the mean of the two devices [81]. The proportional bias implies
that the radar device either overshoots the high values or undershoots the low values
of the physiological parameters. The bias of -7.23 bpm with the 95 percent
confidence intervals of 27.24 bpm and -41.22 bpm respectively in Figure 14, showed
that the radar device is 7.23 bpm more than the reference device with respect to
analyzing the deviations between the two devices [69]. Since the bias obtained from
the Bland Altman analysis does not ascertain the acceptability of the limits, the
scatterplots of the overall Bland Altman for the heart rate parameter was assessed
with respect to the predetermined acceptable limit of +5 bpm for physiological
parameters [70] shown as red dashed lines in Figures 14 and 18. The deviation of 2
bpm from the acceptable limit of +5 bpm by the bias is due to the influence of the
observed outliers and proportional bias in the data. However, over 70 % of the heart
rate data lies within the acceptable threshold having low biases and narrow
agreement levels with few exceptions of high biases and wide agreement levels
observed in the scenarios 6, 7, 9, 15, 16, 23 and 24 which are above the threshold
limit shown in Table 6 as the summary of the computation of Bland Altman
parameters for heart rate (see appendices). The low biases and narrow agreement
levels are suggestive of strong agreement between the two devices whereas the high
biases and wide agreement levels implies poor agreement levels. Thus, Table 6
showed that more than 70 % of the heart rate data fall within the strong agreement
levels.Invariably, there are significant trends in the occurrence of strong agreement
levels between the two devices in the measurement scenarios with the human subject.
For example, Subjects 1, 2, 4, 5 have low biases in scenario 10 while scenario 11
showed low biases for Subjects 1, 2, 3, 4. The high biases for Subjects 3 and 5 in
these respective scenarios could be as a result of the radar sensor overshooting the
high values of the individual subject. Similar trends of low bias were also observed
for scenarios 1, 2, 3, 4, 5, 8, 12, 13, 14, 17, 18, 19, 20, 21, and 22 which implies that
the front side and back displayed good agreement levels at their respective
parameters of measurement. The overall average computation of the heart rate for all
the participants is estimated at 77.18 bpm.

Figure 14. Overall Bland Altman plot for Heart rate(bpm) for all human subject per
scenario.
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Outliers are common and inevitable occurrences in data measurements which have
an overbearing impact on the accuracy of which the statistical mean computation or
average is vulnerable. A more robust approach will be the computation of the overall
median of the mean deviations and limits of agreement whereby the statistical
median computation is not affected by the occurrence of outliers. Table 7 shows the
comparison between the overall mean and median computation of the mean
deviations and the limits of agreement. The bias of -4.14 bpm, 95 percent confidence
intervals of 30.42 bpm and -38.35 bpm obtained from the median computation
alludes to the influence of outliers on mean computation as the bias of -4.14 bpm
falls within the standard acceptable threshold and the confidence interval with less
deviation or width showed strong agreement between the two devices.

Table 7. Comparison between Overall Mean and Median Computation

Bland Altman
Parameters

Overall Mean
Computation (bpm)

Overall Median
Computation (bpm)

HR BR HR BR
Bias (mean differences) -7.228 -5.753 -4.136 -5.036
ULOA* 27.237 5.583 30.418 5.939
LLOA* -41.221 -17.089 -38.351 -15.952
SD+ 17.585 5.784 17.394 5.823
* Upper and Lower limits of agreement, + Standard deviation.

In order to assess the impact of the outliers witnessed in the data on measurement
precision, the confidence intervals of the mean deviations and agreement levels were
computed in Table 8. The computation of the confidence intervals is based on the
assumption of Gaussian distribution of sample data whereby the t-inverse
distribution with the corresponding (N-1) degrees of freedom for two-tailed test from
Medcalc manual and standard error mathematical formula for mean deviation
(√SD2/N) and agreement levels (√3SD2/N) are applied respectively [69, 82].

Table 8. Bland Altman Confidence Intervals for Heart & Breathing rates

Parameters Test of
significance

S. Ea

(bpm)
Confidence Intervals(S.E* t-score)
(bpm)

Mean
Deviation

HR t = 2.78, DF# = 4 8.793 -7.228 + 24.4 [-31.43, 17.17]
BR 2.892 -5.753 + 8.039 [-13.79, 2.29]

ULOA HR t = 2.78, DF# = 4 15.229 27.237 + 42.3 [-15.06, 69.54]
BR 5.009 5.583 + 13.925 [-8.34, 19.51]

LLOA HR t = 2.78, DF# = 4 15.229 -41.221 + 42.3 [-83.52, 1.08]
BR 5.009 -17.089 + 13.925 [-31.01, -3.16]

astandard error, #degrees of freedom.

In [69], the evaluation of measurement precision is validated when the equivalence
line of zero bias lies within the confidence intervals of the mean deviation and
agreement levels. Conversely, if the zero bias equivalence line lies outside the
boundaries of the confidence intervals, then there is an indication of systematic errors
such that the results obtained from the radar device overshoots or undershoots in
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comparison with the reference device. The visualization of the confidence intervals
in Figure 17 clearly showed the overlapping of the zero bias equivalence line falling
within the confidence intervals of the mean deviation and limits of agreement
indicative of good measurement precision or lack of significant systematic errors.
However, the respective width of the confidence intervals for the mean deviation and
agreement levels are wide due to the small sample size but a narrower width of
confidence intervals with large size of sample would suffice to have a higher level of
precision [69].

Figure 17. Bland Altman plot of Confidence intervals (Heart rate) for bias and
agreement levels.

Breathing rate

The Bland Altman plot in Figure 18 for the breathing rate showed a replica of the
general trend or proportional bias from high to low values witnessed in the heart rate
with low bias such that the random scatterplots are closer to the mean referencing
stronger levels of agreement between the two devices while the scatterplots are
divergent or dispersed from the mean from above 10 bpm and at extreme higher
values. The divergent trend is observed in the scenarios 1 and 19 for Subjects 3, 4,
whereas same is applicable in scenarios 11 and 12 for Subject 5. This trend might be
due to the variability of the deviations between the two devices such that there is
dispersion in the agreement levels with increasing higher values. Hence, at values
close to 10 bpm the values tend towards convergence, less variability, and low bias
which implies good agreement between the two devices. An example is the Bland
Altman plot for the breathing rate of Subject 3 in scenario 1 in Figure 19 shows the
occurrence of the divergence from 8 bpm and it increases with increasing mean
values of the two devices with outliers witnessed at lower limit of agreement (see
appendices). Thus, we can deduce the influence of proportional bias because as the
mean values of the two devices increases the sample data points are closer to the bias
line which implies good agreement levels at high values with low bias of -2.913 bpm.
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Similarly, in Figure 18 the impact of outliers seen as high values produced from the
radar device is reflected in the bias of -5.75 bpm as well as the agreement levels of
5.58 bpm and -17.09 bpm respectively which implies that the radar device estimated
beyond the reference device by 5.75 bpm and the wide limits of agreement indicate
poor agreement between the two devices. Although with < 1 bpm deviation from the
acceptable threshold, more than 80 % of the breathing rate data lies within the
acceptable limit with exceptions of high bias occurrence in scenarios 23 and 24
respectively as shown in the summary Table 9 of Bland Altman parameters for
breathing rate (see appendices). The significant trend of low biases with narrow
limits of agreement and high biases with wide agreement levels witnessed in the
heart rate data is replicated in many scenarios for the breathing rate which is captured
in Table 9. The calculation of the overall average of the breathing rate for all the
participants was estimated at 15.54 bpm.

Figure 18. Overall Bland Altman plot for Breathing rate(bpm) for all human subject
per scenario.

The overall median computation was performed on the mean deviation and
agreement levels for the breathing rate as shown in Table 7. The bias of -5.04 bpm,
agreement levels of 5.94 bpm and -15.95 bpm respectively for the median
computation compared with the overall mean computation also alludes to the effect
of outliers on the data. Although the visualization of the confidence intervals for the
Bland Altman plot for breathing rate in Figure 20 mirrors the confidence intervals
observed in heart rate but with some exceptions where the equivalence line of zero
bias falls only outside the lower bounds of the agreement level signifying errors in
the sampling or size of samples (N = 5) [69]. It is noteworthy that for all the 5 human
subjects, the scenario 7 (heart rate and breathing rate) with the radar device having
the parameters of measurement (azimuth angle:180o, range: 0 cm, height of radar: 85
cm, tilt angle:0o) displayed large bias for the heart rate and low bias for the breathing
rate while scenario 11 (heart rate and breathing rate) with the parameters of
measurement (azimuth angle:90o, range:40 cm, height of radar:130 cm, tilt angle:45o),
displayed low bias for both physiological parameter. However, scenario 12 (heart
rate and breathing rate) with parameters of measurement (azimuth angle:270o,
range:40 cm, height of radar:130 cm, tilt angle:45o), displayed small bias in both
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heart rate and breathing rate for Subjects 1, 4 while the remaining three subjects had
high biases for heart rate and breathing rates respectively. The implication for these
trends could be as follows: the high bias of the heart rate witnessed at scenario 7
which is at the backside can be related to the influence of proportional bias or
systematic errors between the two devices because a low bias of vital signs is
expected since the radar is close to the human subject. The scenario 11 which is at
the front (right lateral side) witnessed low bias for the physiological parameters is
also expected because of its close proximity to the human subject and the same
applies to scenario 12 which is on the opposite side of scenario 11. However, the
occurrence of low bias of the physiological parameters for only Subjects 1 and 4 on
the left as against all participants on the right could be as a result of positioning of
the subject with respect to FOV of the radar device. In this case, it can be due to
measurement errors as the subject was moved into the different azimuthal angles
instead of the radar device (single radar device was used).

Figure 20. Bland Altman plot of Confidence intervals (Breathing rate) for bias and
agreement levels.

4.2. Pearson Correlation Coefficient

The Pearson correlation coefficient was used to assess the strength and direction of
the linear relationship between the reference and radar devices for the individual
human subject. The correlation plots of each human subject per scenario depicted
extremely weak to moderately high correlation coefficient in the range + 0.60. The
correlation between the two devices in the positive and negative correlation range
values were evaluated with p-values for all 5 human subject per scenario. There were
some significant relationship for both heart rate and breathing rate especially with
respect to the front side and back side scenarios. This implies the similarity in results
obtained from the two devices at the front and back respectively. However, there are
exceptions to this trend where there were no simultaneous occurrence of statistical
significant values obtained on both physiological parameters such as in scenarios 10,
15, 23 and 24 as shown in Table 10 containing the summary of the occurrences of the
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p-values with respect to corresponding correlation of each human subject per
scenario. This exceptional occurrence is suggestive that either heart rate or breathing
rate had statistical significance at any point in time not both at the same time. The
positive correlation obtained in the results is indicative that for every 1 bpm increase
in the reference device there is a corresponding increase in the radar device and
negative correlation depicts inverse relationship. The rejection of the null hypothesis
of either the positive or negative correlation validates the similarity between the two
devices. An example of positive and negative correlation with p-values set at 0.05 is
shown in the correlation plots of the physiological parameters for Subject 1 in
scenario 1 in Figures 21 and 22 (see appendices). The disparity witnessed in the
Pearson correlation coefficient in Table 10, whereby the positive and negative
correlation values occurs alternately between the heart rate and breathing rate can be
adduced to the differences in height and body type of each subject which can be
linked to the RCS. Other possible factors can be the differences in physical
anatomical structure of each human subject with respect to the heart’s location within
the thoracic cavity and in the distribution of adipose tissue in the body [83].
Additionally, the FOV of the radar sensor is affected by the vertical height which
determines the angular tilt orientation of the radar. Hence, as the vertical height is
increased, the radar sensor with the antenna patch should be tilted to an angle that
can accommodate the FOV for good signal quality.
The overall averaged correlation were computed and plotted in Figures 23 and 24
for all the human subject per scenario for the heart rate and breathing rate showed a
weak positive correlation of 0.08[CI: -0.863, 0.899], and 0.24[CI: -0.815, 0.926] with
p-values of 0.388 and 0.008 respectively [84]. The Pearson correlation coefficient is
not robust against outliers as such the overall averaged correlation coefficient for the
heart rate though observed a weak positive correlation but has no statistical
significance which implies lack of similarity between the reference Zephyr device
and radar device. However, the impact of the outliers on the breathing rate data was
not so pronounced as there is statistical significance between the two devices. This
result is expected given the obvious factors of the location of the lungs within the
thoracic cavity (lungs are sandwiched between the heart and the back), the
displacement of the chest during respiration and the strong amplitude of the
breathing signal makes it possible for both devices with different measurement
techniques (contact based pressure pads and non-contact based radar) to detect the
breathing signal. However, the breathing signal can be weakened by the presence of
outliers. Additionally, the heart signals are weak and easily corrupted by influential
interference of the breathing harmonics as well as body movement can affect the
accurate estimation of the heart rate by the radar device. Therefore, it suffices that
correlation coefficient with statistical significance is being observed in the breathing
rate only.

Table 10. Summary of occurrences of Correlation coefficient with p ≤ 0.05

Measurement Scenarios Participant Correlation
[HR & BR, p ≤ 0.05]

Scenario1 Subject 4 Both negative
Scenario2 Subject 3 Both positive
Scenario3 Subject 4 Positive and negative
Scenario4 Subject 1 Positive and negative
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Scenario5 Subject 1 Both positive
Subject 4 Both negative
Subject 5 Both positive

Scenario6 Subject 4 Both negative
Subject 5 Both negative

Scenario7 Subject 2 Both positive
Scenario8 Subject 4 Both negative
Scenario9 Subject 5 Positive and negative
Scenario10 none none
Scenario11 Subject 4 Both negative
Scenario12 Subject 5 Both positive
Scenario13 Subject 1 Positive and negative
Scenario14 Subject 4 Positive and negative
Scenario15 none none
Scenario16 Subject 1 Both negative
Scenario17 Subject 1 Both positive
Scenario18 Subject 3 Positive and negative
Scenario19 Subject 5 Negative and positive
Scenario20 Subject 5 Negative and positive
Scenario21 Subject 1 Negative and positive

Subject 3 Negative and positive
Scenario22 Subject 1 Both positive

Subject 2 Both negative
Subject 3 Negative and positive

Scenario23 none none
Scenario24 none none

Figure 23. Overall Pearson correlation coefficient of heart rate for all participants.
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Figure 24. Overall Pearson correlation coefficient of breathing rate for all
participants.

4.3. Error Analysis

The performance metrics of mean absolute error or mean absolute deviation
(MAE/MAD), root mean square error (RMSE) and mean absolute percentage error
(MAPE) were applied or computed to assess the measurement accuracy. Table 11
shows the comparison among the performance metrics tools.

Table 11. Performance metrics for measurement accuracy of Radar device

Performance metrics HR BR
MAE/MAD 13.14 bpm 5.75 bpm
RMSE 17.21 bpm 6.70 bpm
MAPE 18.48 % 50.05 %

The measurement accuracy of the Zephyr Technologies BioHarnessTM 3.0 used with
ECG and breathing emulators were estimated at +1 bpm and +2 bpm for the heart
rate and breathing rate respectively as specified by the manufacturer [63]. On the
contrary, the measurement accuracy of the vital signs parameters for the radar sensor
obtained in this study using the performance metrics of MAE/MAD, RMSE and
MAPE were estimated at 13.14 bpm, 17.21 bpm, 18.48 % for the heart rate and 5.75
bpm, 6.70 bpm, 50.05 % for the breathing rate respectively. The breathing rate has
better performance metrics of MAE/MAD and RMSE compared with the heart rate
which can be alluded to the feeble heart rate signal and its susceptibility of being
corrupted by breathing harmonics or movement of the body as a result the heart rate
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measurements have poor accuracy. This implies that the breathing rate can be
accurately determined even with minimal signal processing due to their strong
amplitude than the heart rate. However, in terms of measurement accuracy the radar
device had a poor accuracy with error rates of 13.14 bpm and 5.75 bpm for the heart
and breathing rates compared to the reference device. A critical look at the values of
the MAE and RMSE for the physiological parameters shows small margin of errors
between them of 4 bpm and 0.95 bpm for the heart rate and breathing rate
respectively. This implies that there is less variability of each error within the
observations of the measurement data which can be alluded to the FOV of the radar
device which increases the SNR. Thus, the tilt angles related to the FOV of the radar
device indeed has positive impact on the accuracy. The MAPE values of the radar
device was poor at 18.48 % and 50.05 % for heart rate and breathing rate
respectively. This implies that both heart and breathing rates deviated from the mean
by 18.48 % and 50.05 % each which can be due to the influence of outliers observed
in the measurement data. These MAPE values conflict with the MAE and RMSE
metrics as it shows that the heart rate has a higher accuracy than the breathing rate.
This exceptional case of the MAPE value of 50.05 % for the breathing rate showed
that the accuracy in measurement decreases with time and will require calibration.
Furthermore, the measurement accuracy of the breathing rate declines at higher
frequencies [85] due to the phase ambiguity of null point occurring at the
displacement of the human subject greater than half of the wavelength of the carrier
frequency as well as the increase in the breathing harmonics as the frequency
becomes higher [86] and in [32] suggests deploying in the signal processing,
harmonic cancellation algorithm for the vital signs estimation.
Therefore, as the frequency increases with time since it is an FMCW radar sensor,
the accuracy of measurement for the breathing rate will reduce which will require
calibration to be performed similar to the time dependent calibration for blood
pressure in [87]. Alternatively, the chirp system parameters can be configured or
adjusted to operate at the optimal frequency where the distance of human subject is
less than half of the wavelength of the carrier’s frequency in order to reduce the
degradation in the breathing rate and heart rate detection accuracy [88].

4.4. Coefficient of Variation

The CV is used to assess the dispersion of the sample data points from the mean and
infer the accuracy in measurement. The results of the CV for the measurement data
revealed a general trend of low CV values in heart rate and breathing rate in the
reference Zephyr device with less dispersion from the mean which is suggestive of
high estimates of precision compared to the observed high CV values of
physiological parameters from the radar device. This trend is clearly evident in the
CV plots of the physiological parameters and scenarios for each human subject. The
data visualization of the CV of the heart rate and breathing rate for each human
subject per measurement scenario for the reference Zephyr device and radar device
are shown in Figures 25A-D (see the appendix). For example, Subject 1 showed a
remarkable low CV values of the reference device for all the scenarios in heart rate
data compared to other human subject, whereas Subject 5 showed the inverse in
Figure 25A. The contrasting trend in Subjects 1 and 5 needs to be investigated
because they have similar human parameters except for differences in sex. A device
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can not be accurate for one person and inaccurate for another except there is a factory
defect. However, there are exceptions which conversely varies against this general
trend in the different measurement scenarios for each human subject captured in the
remaining Figures 25B-D. Hence, there are cases where the reference device has
high CV values while the radar device has low CV values. This implies that the radar
device outperformed the reference device in some scenarios per human subject.
Table 12 provides the summary of the occurrences of low CV of the heart rate and
breathing rate for each human subject at different measurement scenarios from the
radar device. The averaged CV of the physiological parameters for all participants at
each measurement scenario in Figures 26 and 27 showed a remarkably low and high
CV for the heart rate at scenarios 7 and 15 respectively in comparison with the other
measurement scenarios. Similarly, the occurrence of significantly low and high CV
compared to other measurement scenarios for the breathing rate is replicated in the
measurement scenarios 23 and 15 respectively. The trend of the low CV values for
the physiological parameters observed in the averaged CV versus scenarios plots for
all participants suggest that the heart rate and the breathing rate can be accurately
determined at scenarios 7 and 23 respectively for all participants. Although, the
physiological parameters can be measured at scenario 15 with less accuracy due to
the high CV values obtained, it can be resolved by widening the FOV to 60o or by
increasing the vertical height of the radar device with a reduced tilt angle
accommodating a wide FOV. In addition, the overall occurrence of the low CV in
measurement scenarios 7 and 23 as well as high CV at measurement scenario 15 for
the physiological parameters converges at the back side for all participants with the
common parameters of measurement of azimuthal angle of 180o and range of 0 cm
but with different corresponding vertical height of 85 cm, 130 cm, 150 cm and tilt
angles of 0o, 30o and 45o. This implies that the proximal location of the radar device
at the backside with respect to the human subject, the vertical height of the radar
device and tilt angle can accurately estimate the physiological parameters. Thus, the
varying vertical height and tilt angle have impact on the measurement accuracy with
respect to the low or high CV because the measurement scenarios 7 and 23 have the
vertical height and tilt angle at 85 cm, 150 cm and 0o, 30o respectively, we have low
CV whereas the measurement scenario 15 has the vertical height and tilt angle at 130
cm and 45o, we have high CV. The differences in the CV at the backside can be
adduced to the FOV which is affected by the vertical height that determines the
angular tilt orientation of the radar through an inverse relationship.
The low CV values of the physiological parameters from the radar device shown in
Table 12 reflects the predominance of the breathing rate over the heart rate which
differs for each human subject per scenario. This implies that the breathing rate can
be accurately measured than the heart rate which alludes to the strong amplitude or
harmonics of the breathing signal. As per the scenarios, it is evident that the low CV
values of the physiological parameters were observed in the front side of each human
subject for the respective parameters of measurement with the azimuthal angles
ranging from 0o, 45o, 90o and 270o with the isolated case of the angle 315o having
low CV occurring in participants Subject 2 and Subject 3 only. Similarly, the back
side of each human subject witnessed low CV for the corresponding parameters of
measurement with the azimuthal angles ranging from 135o to 225o. This implies that
the breathing rate and heart rate can be measured reliably at the front side with the
azimuthal angles of 0o, 45o, 90o, 270o and back side with azimuthal angles of 135o,
180o, 225o alongside the respective corresponding parameters of measurement for all
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participants. However, the exceptional case of low CV at the frontal side of the
azimuthal angle of 315o and range of 80 cm for only Subjects 2 and 3 alludes to the
characteristics of the subject in the form of RCS of which the Subjects 2 and 3 have
the lowest height of 168 cm and 172 cm with the circumferential diameter of 71 cm
and 85 cm respectively. Apart from the RCS, the other factors that can be linked to
the inter-person variations in occurrence of the low CV values in different scenarios
are the proximity of the radar device to the human subject, vertical height of the
radar device which affect the FOV, and tilt angle.

Table 12. Low Coefficient of Variation & High Signal to Noise ratio of Radar device
for each participant

Participant HR (Low CV/High SNR) BR (Low CV/High SNR)
Subject 1 Scenario1

Scenario2
Scenario4
Scenario6
Scenario12

Subject 2 Scenario14 Scenario3
Scenario4
Scenario17
Scenario21
Scenario23
Scenario24

Subject 3 Scenario2 Scenario1
Scenario7 Scenario5
Scenario11 Scenario7
Scenario16 Scenario8
Scenario17 Scenario11
Scenario18 Scenario20
Scenario20

Subject 4 Scenario7 Scenario3
Scenario15 Scenario8
Scenario16 Scenario9
Scenario24 Scenario10

Scenario18
Subject 5 Scenario3 Scenario2

Scenario6 Scenario10
Scenario7 Scenario12
Scenario11 Scenario17
Scenario12 Scenario23
Scenario16
Scenario18
Scenario19
Scenario23
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Figure 26. Averaged Coefficient of Variation per scenario of heart rate for all
participant.

Figure 27. Averaged Coefficient of Variation per scenario of breathing rate for all
participant.
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4.5. Signal to Noise Ratio

The analysis of the CV is replicated in the SNR of which high SNR is correlated to
low CV values observed in Table 12. Low CV values indicate accuracy or precision
of measurement. The SNR is the inverse of CV as such reflects the inverse trend of
the CV, so high SNR indicates accuracy. Similarly, the general trend of high SNR is
witnessed in the reference device compared to the radar device. The radar device
outperformed the reference device in some measurement scenarios which were
captured in Table 12. The data visualization of the SNR ratio of the heart rate and
breathing rate for each human subject per measurement scenario for the reference
Zephyr device and radar device are shown in Figures 28A-D reflects the SNR trends
between the two devices (see the appendix). In Figure 28A, Subjects 1 and 5 showed
contrasting trends in the SNR for the heart rate among all the participants where
Subject 1 had the highest SNR for all the scenarios while Subject 5 had the least
SNR for majority of the scenarios compared to others for the reference device. Again,
it is unclear the causal factors of this significant trend and further investigations need
to be done because both of them have the same height and circumferential diameter.
In the same vein, high SNR values were dominant for all participants in the breathing
signal than the heart rate in the different measurement scenarios indicative of high
accurate measurement of the breathing signal by the radar device. In Figure 28B, a
significant trend of high SNR for the heart rate observed on measurement scenario 7
for participants Subjects 3, 4, 5 implies that the backside with the range of 0 cm,
azimuth angle of 180o, tilt angle of 0o and vertical height of 85 cm has good
detectability. Furthermore, high SNR for the heart rate were recorded at the backside
of the human subject having the azimuth angles of 135o, 180o and 225o at vertical
heights of 85 cm, 130 cm, 150 cm with their respective tilt angles. The front side
notable for good signal quality have the azimuth angle ranging from 0o, 45o, 90o and
270o with their corresponding parameters of measurement. These similar trends are
observed in the remaining Figures 28C-D. However, the front side azimuth angle
range of 315o with high SNR for measurement scenarios 5 and 21 only occurred for
Subjects 2 and 3 with average heights of 168 cm and 172 cm respectively which
implies that persons of average height will have good signal quality of the vital signs
parameter detected within this angle. Figures 29 and 30 showed the averaged SNR of
the vital signs parameter for all participants per measurement scenario with the
notable peaks and valleys of occurrences of the signal quality replicating the inverse
of CV of heart rate observed at measurement scenarios 7 and 15 as well as
measurement scenarios 23 and 15 respectively for the breathing rate.
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Figure 29. Averaged Signal to noise ratio per scenario of heart rate for all
participants.

Figure 30. Averaged Signal to noise ratio per scenario of breathing rate for all
participants.

In the data visualization of the SNR (dB) versus the angular orientation of the
radar’s different tilt angles, the measurement scenarios were grouped with respect to
the corresponding parameters of measurement of azimuth angles and range which
were constant while the vertical height of the radar device and the tilt angles varied.
The plots of SNR (dB) versus tilt angle was performed in order to assess its impact
on the measured physiological parameters from individual human subject. The
measurement scenarios at the front side (1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 17, 18, 19, 20,
21) and the back scenarios (6, 7, 8, 14, 15, 16, 22, 23, 24) witnessed an increasing
trend in SNR in all the plots culminating at 30o tilt angle for Subjects 2, 3, 4, 5 with
either Subject 2 or 3 having the highest SNR. However, Subject 1 mostly achieved a
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high SNR at 45o tilt angle in majority of the plots. For example, in scenario 18
Subject 3 has the highest SNR at 30o tilt angle shown in Figure 31B (see appendices)
with the parameters of measurement (azimuth: 45o, range: 80 cm, height of radar:
150 cm) whereas Subject 2 has the highest SNR at 30o tilt angle in scenario 11 with
parameters of measurement (azimuth: 90o, range: 40 cm, height of radar: 130 cm),
not shown here for concise presentation as similar trend was witnessed/replicated in
all front scenarios. This implies that persons within the height range of 168 cm to
172 cm will have good signal quality at the front side compared to others. For the
back scenarios, Subjects 2, 4 and 5 had the highest SNR at different tilt angles of 45o,
0o and 30o. Subject 2 had the highest SNR at 45o (scenario 22), Subject 4 at 0o
(scenario 7) with a positive SNR, and Subject 5 at 30o (scenario 24). Exceptional
cases were observed in the back scenarios. Again, for the sake of brevity, all figures
could not be displayed here. However, a notable case is the occurrence of high
positive SNR by Subject 4 in scenario 7 shown in Figure 31G (see appendices). This
could be due to the characteristics of the subject as per RCS, anatomy and
distribution of adipose tissue in the body. Hence, it can be inferred that tall persons
will have better signal quality at the back compared to others since Subject 4 is the
tallest in the group with the height of 178 cm. The SNR (dB) versus tilt angle plots
for all participants reveal that the tilt angles ranging from 0o to 45o positively impacts
with different magnitude in good signal quality on the captured vital signs parameter
from each human subject irrespective of the other corresponding parameters of
measurement. The SNR ranges from -15 dB to +5 dB. However, the general trend of
highest signal quality is noticeable at tilt angle 30o for majority of the measurement
scenarios for each participant with some few exceptions observed at tilt angles 0o or
45o respectively. This implies that the performance of the radar is largely hinged on
the FOV captured by the radar device which is dependent on several factors such as
the layout of the antenna patch on the printed circuit board, the position or location
of the radar within the domiciled environment, the angular orientation of the radar
and the system or chirp parameters that are tuned in the configuration files [89].
Another factor is the bore-sight of the radar which is the angular orientation of the
radar at which the power received at the antenna is at its peak or highest magnitude
which ideally occurs at 0o for azimuth and elevation angles respectively. The typical
angles of the radar’s bore-sight range from 20o to 30o. The FOV of the radar sensor
array of antennas can be derived from the antenna spacing d which is equal to half of
the carrier’s wavelength. Thus, the FOV is highest at the range of + 90o [79]. The
work in [36] asserts that angular resolution of the array of antennas of the radar
device’s bore-sight can be estimated as 29o. Apart from the antenna spacing, the
antenna gain pattern also influences the detectability of an object (range resolution)
from the radar at different angles such that ideally antennas would have a maximum
gain at one angle, usually at 0o which is directly facing the front of the antenna and
then the antenna gain will reduce as the angle increases. Therefore, alluding to the
fact of good measurability at the frontal side of the human subject. The tilt angle
which is related to the FOV such that 0o tilt angle which relates to 90o FOV has the
highest SNR and as the tilt angle increases, the FOV of the radar decreases thereby
affecting the SNR which in turn reduces the detection accuracy. Hence, the curved
lines in the plots of SNR (dB) versus tilt angle such that at 30o (bore-sight angle) the
highest power is received at the antenna.
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4.6. Analysis of Boxplots

The boxplots for the 5 human subjects for all 24 measurement scenarios of the
breathing rate and heart rate showed some consistency in lower values while high
variability in higher values were observed with outliers in most measurement
scenarios for the heart rate. However, the general range of the heart and breathing
rates in all measurement scenarios for all participants lie within 40 to 120 bpm and 5
to 35 bpm respectively. Thus, these observed spread of the data correlates with
resting heart and breathing rates in adults [67]. The measurement data is riddled with
outliers that affected the measure of spread of the range and mean since the range
relies on the minimum and maximum values in the dataset. In addition, there are
similarities in the shape of the boxes and whiskers, the median and IQR for most of
the scenarios show less to moderate overlapping of the median or boxes. An example
is the boxplot of the physiological parameters for measurement scenario 20 for all
participants shown in Figure 32 (see the appendix). The boxplot of the heart rate
versus the individual human subject showed that the Subjects 1, 2 and 3 dataset are
riddled with outliers which can be due to body movement but the Subjects 4 and 5
are without outliers. These outliers impacted on the measure of spread as the
minimum or maximum values are taken as outliers since outliers are 1.5 times IQR
either below/above the lower and upper quartiles respectively. The outliers in this
case do not affect the median or the IQR which are robust because they depend on
the upper and lower quartiles. The shape of the box and whisker are similar for
Subjects 4 and 5 with same range and median but there is more variability in Subject
5. This implies that there is comparability or association between Subjects 4 and 5 in
the heart rate values but the middle 50 % of Subject 5’s data has more spread than
Subject 4 which is consistent or precise. Similarly, Subjects 1 and 2 have the same
median but different ranges of which Subject 1 has more spread and variability than
Subjects 2 and 3. The Subjects 1, 2 and 3 have outliers which affected their ranges.
Thus, the middle 50 % data of Subject 1 is more spread out than Subjects 2, 3 and
their true accurate value is impacted by outliers. The median of Subjects 4 and 5 are
5 bpm more than Subject 2 which has the least spread of data and is 2 bpm more than
Subject 3. Less overlapping of the median of two boxes means association and vice
versa, so Subjects 1, 2, 3, 4 and 5 with less overlapping in the median or centers are
associated which is indicative of similarity in the spread of the heart rate data.
In like manner, the boxplot of the breathing rate showed outliers in Subjects 1 and 5
except for Subjects 2, 3, and 4. There is similarity in the IQR range for Subjects 1
and 4 as well as Subjects 1 and 3 with the exception of Subject 5 which has less
variability. The shape of the box and whiskers are shorter at the lower values
compared to the longer upper values so there is clustering or consistency in lower
values. Subjects 4 and 5 have the same median while the median of Subject 2 is 5
bpm more than all the subjects having the highest median. Thus, there is
comparability among the gender as there is less overlap of their median.
There are few isolated cases in the boxplot for heart rate where the IQR is zero. An
example is the measurement scenario 7 shown in Figure 33 (see the appendix).
Subjects 1, 3, 4, 5 all have outliers with the exception of Subject 2. However,
Subjects 3, 4 and 5 all have their IQR equal to zero, meaning that there is no
variability or spread in the middle 50 % data. Therefore, the values of the middle
50 % data for the three subjects are identical. The interesting thing here is their
position in the boxplot. Both Subjects 3 and 4 have heart rate values close to 120
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bpm while Subject 5 has heart rate greater than 80 bpm. The heart rate of 120 bpm is
indicative of heart problem or tachycardia but the participants are healthy adults, so it
only showed that the radar device overestimated the high values of heart rate in
Subjects 3, 4 and probably 5 which is greater than 80 bpm. However, Subjects 1 and
2 had variability in the middle 50 % with the median of Subject 1 higher than the
median of Subject 2.
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5. DISCUSSION

This research study seeks to provide insights and contribution towards driver vital
signs monitoring in vehicular environments which would reduce injuries and deaths
caused by road accidents with the possibility of harnessing smart vehicle monitoring
of motorists. The vital signs monitoring of breathing rate and heart rate of a human
being provides insights into the well-being and quality of life of an individual.
Furthermore, the information is valuable to physicians as it holds the potential of
providing adequate healthcare and increasing life expectancy as per early diagnosis
of underlying medical conditions and clinical evaluation of diseases leading to timely
interventions or treatment. The advantages of the millimeter wave radars in terms of
contact-less sensing, convenience, privacy infringement mitigation, portability and
high detection accuracy due to the high bandwidth makes them ideal for continuous
monitoring of vital signs in vehicular environments. In recent times till present, there
is still an on-going research focused on accurate estimation of vital signs in literature
[5] to ameliorate the inherent challenges posed by radar sensing systems through the
implementation of sophisticated signal processing algorithms, machine learning,
hardware or sensor fusion [5, 31, 59] geared towards increasing the SNR and
accuracy improvement. The discussion highlights the significance of the results
alongside the limitations of results/study and future direction.
This study investigated the impact or effect of placement of radar sensor in angular
orientation (tilt angles) on the accuracy of vital signs estimation from human subjects,
validated the measured results by comparing the radar sensor with a reference device
as well as comparing the results amongst the different gender. The main aim of the
study has been achieved as per the findings, since it is yet to be documented in
literature the positive impact of tilting the radar sensor to 30o can optimally increase
the SNR which invariably improves measurement accuracy. As recommended in [69],
the assessment of agreement between the two devices were performed in this study
using the Bland Altman analysis alongside with the Pearson correlation coefficient
for strength of association of the results obtained from both devices. The Bland
Altman results presented showed good agreement levels between the FMCW radar
sensor and reference device. Although proportional bias and outliers were observed
in the scatterplots, the presence of outliers did not affect the measurement precision
but it affected the accuracy as confirmed by the computation of the robust approach
of overall median of mean deviations and limits of agreement of which results
obtained fell within acceptable threshold of + 5 bpm. The interchangeability or
comparability of the radar device with the reference device and good measurement
precision was validated by the computation of the confidence intervals of the mean
deviation and limits of agreement with respect to the location of zero bias
equivalence line falling within its region of breathing and heart rates. Thus,
confirming the reliability of results obtained from the radar device and that it can be
used in practice for continuous vital signs monitoring. The results of overall average
for the heart rate and breathing rate for all participants used in the study were
estimated at 77.18 bpm and 15.54 bpm respectively which falls within the adult
range for heart rate and breathing rate [32, 67], correlating the results of 20
volunteers (10 females and 10 males) in an earlier study [90] which reported heart
rate (77.827 bpm, 78.587 bpm) and breathing rate (19.23 bpm,19.959 bpm)
respectively. Quality time is expended in commuting which can be harnessed for
health checkups of the driver such that the extraction of the vital signs can be used
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for the continuous monitoring of blood pressure since the resting heart rate has a
positive correlation with peripheral or systolic blood pressure and a negative
correlation with central blood pressure clinically used to evaluate heart/kidney
related disorders [91]. This will go a long way in bridging the gap of intermittent
measurement of blood pressure, whereby some salient events are missed. It will
enhance effective blood pressure management and interventions. The vital signs
parameters can be used for driver detection and identification which can be infused
into Internet of Things devices for ubiquitous sensing or ADAS for health status
monitoring. Machine learning algorithms can be used on the large pool of human
target generated radar data to develop a model to accurately classify and detect health
abnormalities as the dataset covers different nationalities as such the model will be
generalisable. The model can be trained to classify changes in cardiac output in the
different gender and developed as a wearable cardiac output sensor using the Google
Soli miniaturized radar sensor [92] together with an algorithm to implement the
mathematical estimation (stroke volume multiplied by heart rate) [93]. The results of
the Pearson’s correlation coefficient presented showed positive and negative linear
relationship between the radar device and reference device for the vital signs in
different measurement scenarios which can be factored to RCS, location of the heart
differs from each subject and distribution of adipose tissue [83]. The differences in
body type and height linked to RCS can be used for a classification system for group-
related maladies. For example, apnoea is prevalent among elderly persons and
children below five years [59], the negative correlation of height and cardio-vascular
disorders poses height as a risk factor [94]. The negative heart-height association can
be used to monitor heart rhythmic dysfunctionalities [95]. The computation of
overall averaged correlation coefficient revealed weak positive correlation in both
vital signs parameters with statistical significance in the breathing signal only. This
trend is possibly due to the presence of outliers and correlation coefficient is highly
sensitive to them. However, the correlation coefficient range from - 0.60 to + 0.60
was achieved for all of the participants which is by standard a moderately high
correlation, although it would have been higher in the absence of outliers. Thus,
correlating with higher accuracy rate reported by earlier studies [16, 17, 46, 49, 50,
51, 52, 58].
The low values of CV indicate high accuracy and vice versa. Thus, the results of the
overall averaged CV presented showed low values of CV for all tilt angles (0o, 30o,
45o) in measurement scenarios 7 and 23 while scenario 15 has high value. These
measurement scenarios are all referenced to the backside of the human subject (180o
azimuth angle, 0 cm range) with the radar device at various vertical heights of 85 cm,
150 cm and 130 cm respectively. Since the backside is closest to the human target,
then lower CV is expected. Raheel et al. [59], suggested that the SNR can be
enhanced via mitigating the effects of signal-attenuation factors and optimizing the
radar’s location with reference to the backside. Apart from 180o azimuth angle, the
radar sensor can be positioned at angles 135o or 225o at the back which showed low
CV. Both the CV and SNR values presented showed the predominance of the
breathing rate at the front side than the heart rate while the heart rate could reliably
be measured from the front lateral sides and the back which resonates with the
conclusion in [51]. Similarly, Berenschot [99] in his work, achieved better heart rate
results from the lateral sides and higher breathing rate results from the front side of
the human subject. Similar factors that affected the correlation coefficient are
replicated here resulting in high CV. However, low CV were recorded in the front
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side and in practice, the radar device can be positioned both at the front and back of
the human target in a vehicle. The scenario 15 can have low CV at tilt angle 30o with
a wider field of view than at the current tilt angle of 45o.
The results of the SNR presented, inversely replicated the trends in CV. However,
the visual plots of the SNR versus tilt angle presented showed the curved or
parabolic line with a peak at 30o tilt angle in majority of the measurement scenarios
with some exceptions at 0o and 45o respectively. Thus, optimal SNR is achieved
when the radar device is tilted to 30o (radar’s bore-sight). The range of the SNR for
all the tilt angles and all the participants is estimated at -15 dB to + 5 dB. The
placement or positioning of the radar sensor at the 30o tilt angle irrespective of the
range and vertical height increases the SNR which affects the range
resolution/detection accuracy and ultimately improves the accuracy of the vital signs
estimation. Although, it is widely assumed that the directionality of the radar affects
accuracy but in [46, 83], this assumption is disproved since the radar’s FOV
accommodates a wide area of the body surface as such the directionality or specific
aligning of the antenna is inconsequential. Thus, the tilt angles which relates to the
FOV of radar device has affirmed this assertion. The radar sensor can be integrated
in a smart/biometric seat positioned at a tilt of 0o/30o at the back/headrest
respectively. In future work, the radar device positioned at rear view mirror and tilted
to 30owill be used in real-life driving scenario as line of sight issues are reduced and
accuracy is improved. An audacious thinking might be to have an AI robotic arm
fitted with the radar device inside the vehicle to detect, identify and map the human
parameters of the driver to optimal tilt angle for vital signs monitoring.
The results of the error analysis presented showed that the breathing rate had better
performance metrics compared to the heart rate with error rate of 5.75 bpm and 13.14
bpm respectively. Heart rate signals are weak and easily affected by breathing
harmonics or body movements which impacts on their accuracy. Interestingly, the
MAPE metrics gave a conflicting result that needs to be investigated. The small
margin of error between the MAE/MAD and RMSE showed less variability in the
observations between the two devices. Comparatively, the accuracy measures
obtained in this study were poor with reference to some related work that reported
lower error rates of under 3 bpm [43].
The results of the boxplot analysis showed association or comparability among the
different gender using the key indices of range and IQR for the analysis. Thus, the
analysis showed that the normal adult range for vital signs were obtained in majority
of the scenarios with very few exceptions of very high pulse rate close to 120 bpm in
some subjects which can be due to stress or systematic errors of overestimation of
the high values from the radar device.
The limitation of the results are largely observed as outliers which can be due to
several factors such as movement of the body during measurement as it is not
convenient to maintain a static position for sometime period which is being required
in the experiment. Thus, the presence of outliers were prevalent in the dataset,
thereby negatively impacting on the accuracy, Bland Altman analysis, correlation
results and so on. It has been proven in literature that the FFT algorithm is
inadequate for the accurate estimation of heart rate in real-life driving scenarios [43],
as it achieved less accuracy than the MUSIC algorithm used by the authors.
Currently, the arctangent demodulation and FFT algorithms are implemented in the
signal processing chain of the TI FMCW radar, so for future work, the chirp system
parameters will be optimized and MUSIC algorithm implemented at the receiver side
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to extract the vital sign parameters or the robust modified DACM algorithm (which
is non-dependent on distance and amplitude) will be implemented in real-life driving
scenario. Also, the radar sensor with the modified DACM algorithm will be used for
home sleep monitoring at far distance of 5 m [59] alongside with communication
gadget in the same frequency range to validate its compatibility. Furthermore, giving
one of the setbacks of the MAPE performance metric of imploding on low or small
datasets, it will be interesting to use this accuracy metric in future work on larger
datasets to test the veracity of the assertion of inaccurate breathing rate at higher
frequencies.
The limitation of the study are numerous which include small sample size, reference
device used, a single radar sensor, a chair, protractor, 3 m measuring tape,
measurement setup and procedure. The sample size of 5 persons were used in the
study but there is variability in the dataset comprising of diverse backgrounds of 2
Europeans (male & female), 2 Africans (male & female) and 1 Asian (male).
However, a larger sample size will be sufficient for either artificial intelligence or
machine learning algorithms to be used to train a model. So going forward, there will
be proper planning and advertisement on the study in order to recruit more volunteers.
Another important aspect is the sample analysis that must be computed to ascertain
the sample size required for the Bland Altman plot analysis before embarking on the
experiment which is relevant for determination of accurate measurement. The
relative average height used in the study can not be for wide population conclusions
as the height bracket did not include the two extremes of short or tall persons. Also,
the participants were without any medical condition so dataset cannot be used to train
a model for pattern recognition of some medical disorders.
The reference Zephyr module is a wellness device used by professional athletes.
Thus, it is not a medical grade device which would have improved the validation of
the outcomes of this study. The charging time of the battery is 3 hours for longer use,
so i had to charge the battery overnight after the experience of flat battery with the
first human subject. A medical grade device(s) or clinically validated commercial
off the shelf Hexoskin will be used in aforementioned future directions.
The measurement setup and procedure required the human subject to be stationary
during measurement of 2 to 3 minutes each which is quite a difficult task to achieve.
A close eye was kept on the volunteers to monitor compliance to the instruction.
Unfortunately, some measurements had to be repeated twice because of large body
movement from the human subject which made the measurement duration to go a
little over the stipulated 2 hours period. A single radar device connected to a laptop
was used for the 24 measurement scenarios which involved intermittent adjustment
of the radar device mounted on a tripod to the different parameters of measurement
(range, vertical height and azimuthal angle). A protractor was used to estimate the tilt
angles to which the mounted radar device was to be tilted. However, a measuring
tape with laser light will be used in future to conveniently aid accurate centering and
measurement. Since the mounted radar device connected to the laptop cannot
conveniently be moved around the human subject mimicking the azimuthal angles in
clockwise direction of 0o, 45o, 90o, 135o, 180o, 225o, 270o, 315o, 360o/0o, the human
subject was adjusted into those angular positions. In order to accommodate all these
movements, some markings had to be made to account for the azimuthal angles.
Hence, a chair (differs in dimension to car seat) was used for the experiment because
it would have been very inconvenient using a car seat as the volunteer must stand up
for the car seat to be adjusted for each measurement scenario. These setbacks can
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introduce errors in measurement due to the approximations of the parameters. A
man-machine interface in form of virtual reality or simulator can be developed using
computer graphics and machine vision to overcome the challenges of the intermittent
adjustment of human subject and a single radar device in the laboratory.
Alternatively, for future work as mentioned in [40] four radar devices can be used to
capture four body postures (front, back, left side and right side) and superimposing
the FFTs in a laptop.
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6. CONCLUSION

This research highlights the study of driver’s vital signs monitoring using millimeter
wave radar device for vehicular environment. The results obtained from the radar
sensor and reference device were compared, the impact or effect of the radar’s
location and azimuthal or angular orientation on the physiological parameters were
assessed as well as the comparison of the results of the breathing rate and heart rate
among the different gender. The 24 measurement scenarios captured during
measurement of the human subjects were pre-processed with the bandpass filter of
0.1 to 0.6 Hz and 0.8 to 4.0 Hz respectively. The peak interval and FFT algorithms
were applied for the extraction of the vital signs estimation.
The SNR is affected by the chirp duration, bandwidth, transmitted power, FOV of
radar device and the RCS which reduces the received power. This study has
demonstrated that the depression/tilt angles of 0o, 30o and 45o of the angular
orientation of the radar device which is related to the FOV also influences the SNR
which is evident in the range of -15 dB to +5 dB obtained. The slim marginal error
between the MAE/MAD and RMSE metrics further validates the positive impact of
the tilt angles in the measurement accuracy of the vital signs estimation. However,
majority of the measurement scenarios irrespective of the parameters of
measurement showed high signal quality of the vital signs parameters at 30o tilt angle
which is related to the bore-sight of the radar device. The line of sight common
challenge of the radar system can be resolved by the radar’s tilt angle resolution of
30o. In addition, it has disproved the norm of directionality of the radar device to the
chest as a pivotal factor for achieving accuracy because the tilt angle is related to the
FOV which affects the SNR and the SNR influences the range resolution for
detection accuracy.
The strength of this study is that it is yet to be documented in literature the impact
or effect of the angular orientation of the radar device with respect to the depression
or tilt angles on the measured physiological parameters from human subjects.
Furthermore, the new finding observed with respect to the decline of the breathing
rate accuracy with higher frequencies as time progresses needs to be investigated if
the radar device is to be used for continuous monitoring and premium is placed on
accuracy. Limitation of the study is visible in the sample size and outliers which
affected the measurement accuracy, as well as the reference Zephyr device which is a
wellness device yet to be clinically evaluated and validated. In addition, the system
parameters has to be adjusted with optimal settings in order to achieve higher
performance of accuracy.
In future work, the Hexoskin wearable device can be used for comparability studies
with the radar device to validate the feasibility of the radar sensor to be used in
clinical setting or environment. The power analysis for the sample size estimation for
Bland Altman analysis will be performed to have good measurement accuracy.
The modified optical-based (DACM) signal processing algorithm is quite robust
against disparities in various range of RFs which impacts positively on high
measurement detection accuracy and the optimum SNR attained at tilt angle of 30o
related to the radar’s bore-sight irrespective of the corresponding parameters of
measurement resolves the line of sight challenges suffices as potential solution to the
deployment of the millimeter wave frequency radar device in vehicular environment
for proactive and preventative healthcare.
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Appendix 1.

Table 6. Computation of the overall mean deviations and limits of agreement (HR)
Scenarios Bland Altman

Parameters
Subject1 Subject2 Subject3 Subject4 Subject5 Average

Scenario1 Bias HR -2.149
31.063
-35.361

-5.049
25.306
-35.404

8.541
46.43
-29.348

4.894
39.462
-29.674

-12.834
31.566
-57.235

-1.3194
34.7654
-37.4044

ULOA HR
LLOA HR

Scenario2 Bias HR -5.535
28.009
-39.079

-0.25
23.799
-24.3

2.078
17.623
-13.466

-17.276
18.703
-53.256

-1.871
33.169
-36.911

-4.5708
24.2606
-33.4024

ULOA HR
LLOA HR

Scenario3 Bias HR -1.668
30.934
-34.27

2.882
21.413
-15.648

2.364
43.976
-39.247

-7.532
30.562
-45.628

-14.548
34.671
-63.769

-3.7004
32.3112
-39.7124

ULOA HR
LLOA HR

Scenario4 Bias HR 5.265
40.806
-30.275

-3.908
29.946
-37.763

-5.643
28.878
-40.164

13.114
41.192
-14.964

-1.095
30.378
-32.568

1.5466
34.24
-31.1468

ULOA HR
LLOA HR

Scenario5 Bias HR 7.254
42.735
-28.226

-11.144
30.078
-52.368

4.335
32.349
-23.679

-15.906
28.736
-60.55

-13.583
15.135
-42.301

-5.8088
29.8066
-41.4248

ULOA HR
LLOA HR

Scenario6 Bias HR 15.951
55.788
-23.884

-5.344
39.738
-50.428

30.684
54.677
6.691

-10.034
45.543
-65.612

-18.879
25.496
-63.256

2.4756
44.2484
-39.2978

ULOA HR
LLOA HR

Scenario7 Bias HR -18.117
16.901
-53.136

-12.567
24.021
-49.157

-41.174
-16.738
-65.61

-37.038
-20.205
-53.871

-10.366
15.737
-36.47

-23.8524
3.9432
-51.6488

ULOA HR
LLOA HR

Scenario8 Bias HR -30.217
-6.449
-53.985

-4.524
21.613
-30.662

15.93
51.131
-19.27

-13.533
32.431
-59.498

-9.058
30.052
-48.168

-8.2804
25.7556
-42.3166

ULOA HR
LLOA HR

Scenario9 Bias HR -24.414
6.278
-55.106

-25.183
17.722
-68.089

10.288
35.646
-15.069

-11.428
32.208
-55.065

-12.172
23.332
-47.677

-12.5818
23.0372
-48.2012

ULOA HR
LLOA HR

Scenario10 Bias HR 3.434
28.695
-21.826

4.968
26.838
-16.901

11.764
45.496
-21.967

1.085
47.863
-45.693

2.215
45.311
-40.881

4.6932
38.8406
-29.4536

ULOA HR
LLOA HR

Scenario11 Bias HR 1.979
31.276
-27.317

3.684
21.988
-14.618

-0.488
23.819
-24.797

-3.251
49.605
-56.107

7.721
50.072
-34.629

1.929
35.352
-31.4936

ULOA HR
LLOA HR

Scenario12 Bias HR -4.896
18.818
-28.611

-33.121
-0.603
-65.638

11.113
35.619
-13.393

0.053
47.336
-47.229

16.95
53.981
-20.079

-1.9802
31.0302
-34.99

ULOA HR
LLOA HR

Scenario13 Bias HR -17.438
21.268
-56.144

-21.116
8.403
-50.635

1.423
48.734
-45.887

-9.898
21.982
-41.78

1.075
48.242
-46.091

-9.1908
29.7258
-48.1074

ULOA HR
LLOA HR

Scenario14 Bias HR -24.896
14.303
-64.095

3.818
17.983
-10.346

17.38
41.918
-7.158

15.43
67.509
-36.648

-13.131
20.937
-47.199

-0.2798
32.53
-33.0892

ULOA HR
LLOA HR

Scenario15 Bias HR 21.11
57.332
-15.11

-9.138
33.682
-51.959

13.902
52.227
-24.422

29.882
56.126
3.638

-25.574
22.567
-73.716

6.0364
44.3868
-32.3138

ULOA HR
LLOA HR

Scenario16 Bias HR -25.906
21.341
-73.154

-47.73
-8.083
-87.377

14.788
41.166
-11.589

-30.361
11.515
-72.239

-30.178
22.215
-82.572

-23.8774
17.6308
-65.3862

ULOA HR
LLOA HR

Scenario17 Bias HR -29.677
1.577
-60.932

2.476
20.372
-15.418

3.42
28.462
-21.62

2.25
20.641
-16.141

-9.897
22.906
-42.701

-6.2856
18.7916
-31.3624

ULOA HR
LLOA HR

Scenario18 Bias HR -4.311
29.822
-38.445

8.072
32.32
-16.175

-0.556
14.436
-15.55

8.187
46.329
-29.953

-15.015
23.186
-53.217

-0.7246
29.2186
-30.668

ULOA HR
LLOA HR

Scenario19 Bias HR -20.688
17.322
-58.709

4.888
14.632
-4.854

-2.962
25.525
-31.45

14.375
60.625
-31.875

-7.77
39.852
-55.393

-2.4314
31.5912
-36.4562

ULOA HR
LLOA HR

Scenario20 Bias HR 2.807
28.871
-23.255

2.808
15.889
-10.272

7.467
29.782
-14.846

-4.711
38.155
-47.577

-12.643
54.519
-79.806

-0.8544
33.4432
-35.1512

ULOA HR
LLOA HR

Scenario21 Bias HR -2.415
47.062
-51.893

-27.856
7.166
-62.879

-13.813
24.454
-52.082

-2.66
40.975
-46.297

-16.162
40.778
-73.102

-12.5812
32.087
-57.2506

ULOA HR
LLOA HR

Scenario22 Bias HR -28.281
3.813
-60.376

-24.212
13.447
-61.872

6.855
54.932
-41.222

-3.392
46.265
-53.049

-17.496
14.142
-49.135

-13.3052
26.5198
-53.1308

ULOA HR
LLOA HR

Scenario23 Bias HR 0.0000
0.0000
0.0000

-41.931
-24.571
-59.291

-28.646
3.43
-60.724

-16.315
4.088
-36.719

-37.73
-5.077
-70.383

-31.1555
-5.5325
-45.4234

ULOA HR
LLOA HR

Scenario24 Bias HR 0.0000
0.0000
0.0000

-42.114
-16.962
-67.267

-8.289
37.36
-53.939

-18.5
10.442
-47.443

-40.631
-8.043
-73.22

-27.3835
5.69925
-60.46725

ULOA HR
LLOA HR

Overall Average Bias HR -7.22845
27.23677291
-41.2207854

ULOA HR
LLOA HR
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Appendix 2. Second appendix

Table 9. Computation of the overall mean deviations and limits of agreement (BR)
Scenarios Bland Altman

Parameters
Subject1 Subject2 Subject3 Subject4 Subject5 Average

Scenario1 Bias BR -5.864
3.622
-15.352

-2.261
7.759
-12.281

-2.913
11.892
-17.719

-2.722
6.753
-12.199

-10.045
3.679
-23.77

-4.761
6.741
-16.2642

ULOA BR
LLOA BR

Scenario2 Bias BR -5.563
3.216
-14.342

-3.556
7.581
-14.695

-4.677
6.948
-16.303

-10.83
0.329
-21.99

-3.894
3.843
-11.633

-5.704
4.3834
-15.7926

ULOA BR
LLOA BR

Scenario3 Bias BR -2.196
7.65
-12.043

-3.572
7.231
-14.375

-2.039
8.597
-12.676

-8.44
6.977
-23.857

-2.498
10.771
-15.768

-3.749
8.2452
-15.7438

ULOA BR
LLOA BR

Scenario4 Bias BR -0.374
10.964
-11.713

-4.932
3.3
-13.165

-2.35
4.522
-9.222

-3.749
3.108
-10.607

-8.048
5.253
-21.351

-3.8906
5.4294
-13.2116

ULOA BR
LLOA BR

Scenario5 Bias BR -2.171
9.296
-13.638

-7.32
2.609
-17.251

-2.529
5.273
-10.331

-8.548
4.227
-21.325

-2.996
8.749
-14.741

-4.7128
6.0308
-15.4572

ULOA BR
LLOA BR

Scenario6 Bias BR -3.848
6.437
-14.133

-4.868
7.394
-17.131

-4.999
5.187
-15.186

-8.015
10.532
-26.564

-15.021
-3.715
-26.327

-7.3502
5.167
-19.8682

ULOA BR
LLOA BR

Scenario7 Bias BR -2.689
11.454
-16.833

-7.957
4.395
-20.31

-3.597
5.673
-12.869

-2.271
5.142
-9.685

-7.121
-0.715
-13.527

-4.727
5.1898
-14.6448

ULOA BR
LLOA BR

Scenario8 Bias BR -5.853
5.099
-16.806

-4.045
7.954
-16.045

2.949
13.179
-7.279

-12.238
1.289
-25.766

-12.344
1.948
-26.638

-6.3062
5.8938
-18.5068

ULOA BR
LLOA BR

Scenario9 Bias BR -1.869
10.645
-14.384

-10.182
3.984
-24.349

-1.225
6.063
-8.514

-9.823
4.732
-24.379

-1.38
13.683
-16.444

-4.8958
7.8214
-17.614

ULOA BR
LLOA BR

Scenario10 Bias BR -3.979
4.66
-12.619

-7.571
6.51
-21.654

-3.861
2.31
-10.034

-1.236
7.671
-10.144

-4.664
3.376
-12.706

-4.2622
4.9054
-13.4314

ULOA BR
LLOA BR

Scenario11 Bias BR -2.453
4.061
-8.967

-7.264
4.427
-18.956

0.291
10.022
-9.439

-4.538
8.24
-17.318

-5.382
7.235
-18.001

-3.8692
6.797
-14.5362

ULOA BR
LLOA BR

Scenario12 Bias BR -6.84
1.865
-15.546

-9.78
5.31
-24.87

-3.768
5.324
-12.862

0.427
6.359
-5.503

-5.919
3.746
-15.585

-5.176
4.5208
-14.8732

ULOA BR
LLOA BR

Scenario13 Bias BR -3.423
9.638
-16.485

-5.784
4.444
-16.013

-4.536
8.418
-17.49

-8.533
4.99
-22.057

-5.986
8.138
-20.112

-5.6524
7.1256
-18.4314

ULOA BR
LLOA BR

Scenario14 Bias BR -8.433
5.057
-21.923

0.886
7.288
-5.515

-5.435
2.613
-13.483

-4.807
1.647
-11.261

-5.143
7.023
-17.311

-4.5864
4.7256
-13.8986

ULOA BR
LLOA BR

Scenario15 Bias BR 0.807
13.412
-11.797

-1.867
8.921
-12.656

-5.598
5.369
-16.566

-3.204
9.578
-15.988

-2.237
12.028
-16.502

-2.4198
9.8616
-14.7018

ULOA BR
LLOA BR

Scenario16 Bias BR -7.77
10.532
-26.073

-3.758
7.831
-15.347

-10.238
1.555
-22.033

-9.943
5.813
-25.701

-6.087
7.138
-19.312

-7.5592
6.5738
-21.6932

ULOA BR
LLOA BR

Scenario17 Bias BR -2.38
9.05
-13.81

-2.608
12.05
-17.266

-2.31
5.189
-9.809

-4.579
8.552
-17.711

-4.984
4.906
-14.875

-3.3722
7.9494
-14.6942

ULOA BR
LLOA BR

Scenario18 Bias BR -2.701
8.895
-14.299

-6.829
3.171
-16.831

-4.851
7.724
-17.427

-5.704
7.55
-18.958

-0.348
11.015
-11.711

-4.0866
7.671
-15.8452

ULOA BR
LLOA BR

Scenario19 Bias BR -4.483
5.533
-14.5

-9.392
2.48
-21.264

-7.719
5.236
-20.675

-3.137
7.368
-13.643

-3.157
3.897
-10.213

-5.5776
4.9028
-16.059

ULOA BR
LLOA BR

Scenario20 Bias BR -5.524
5.274
-16.322

-10.795
3.142
-24.732

-6.163
11.527
-23.853

-5.215
7.577
-18.008

-4.835
2.405
-12.076

-6.5064
5.985
-18.9982

ULOA BR
LLOA BR

Scenario21 Bias BR -4.763
4.333
-13.86

-11.727
3.136
-26.59

-10.906
1.006
-22.819

-7.074
3.522
-17.671

-7.35
2.539
-17.24

-8.364
2.9072
-19.636

ULOA BR
LLOA BR

Scenario22 Bias BR -8.814
2.14
-19.77

-12.607
4.049
-29.263

-6.92
6.374
-20.215

-1.885
14.76
-18.53

-7.556
5.707
-20.82

-7.5564
6.606
-21.7196

ULOA BR
LLOA BR

Scenario23 Bias BR 0.0000
0.0000
0.0000

-13.049
-4.088
-22.009

-12.961
-2.483
-23.44

-7.895
1.112
-16.903

-10.138
1.303
-21.58

-11.01075
-1.039
-20.983

ULOA BR
LLOA BR

Scenario24 Bias BR 0.0000
0.0000
0.0000

-14.173
-3.83
-24.517

-8.935
9.525
-27.397

-9.926
-1.292
-18.56

-14.855
-6.012
-23.698

-11.97225
-0.40225
-23.543

ULOA BR
LLOA BR

Overall Average Bias BR -5.75283333
5.582989583
-17.0894666

ULOA BR
LLOA BR
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Appendix 3.

Bland Altman Plots of vital signs parameters for Subjects 1 & 3 in Scenario 1

Figure 15. Bland Altman plot for Heart rate (bpm) for Subject 1 in scenario 1.

Figure 16. Bland Altman plot for Breathing rate (bpm) for Subject 1 in scenario 1.

Figure 19. Bland Altman plot for Breathing rate (bpm) for Subject 3 in scenario 1.
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Appendix 4.

Correlation Plots of Heart and Breathing rates for Subject 1 & CV Plot of Heart rate
for Zephyr

Figure 21. Correlation plot of Heart rate for Subject 1 in scenario 1.

Figure 22. Correlation plot of Breathing rate for Subject 1 in scenario 1.

Figure 25A. Coefficient of variation per scenario of heart rate for reference device.
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Appendix 5.

CV Plots of Heart and Breathing rates for Zephyr and Radar

Figure 25. Coefficient of Variation per scenario of B) Heart rate for Radar device C)
Breathing rate for reference device D) Breathing rate for Radar device.

D

B

C
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Appendix 6.

SNR Plots of Heart and Breathing rates for Zephyr and Radar

Figure 28. Signal to noise ratio per scenario of A) Heart rate for reference device B)
Heart rate for Radar device C) Breathing rate for reference device D)
Breathing rate for Radar device.versus Tilt angle Plots for Front and Back
measurement scenarios.

D

C

B

A
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Appendix 7.

SNR versus Tilt angle Plots for Front and Back measurement scenarios

Figure 31B. Signal to noise ratio versus tilt angle for front side scenarios(2, 10, 18).

Figure 31G. Signal to noise ratio versus tilt angle for back side scenarios(7, 15, 23).
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Appendix 8.

Boxplots of Heart and Breathing rates for scenarios 20 and 7

Figure 32. Boxplots of Heart and Breathing rates for all subjects in scenario 20.

Figure 33. Boxplots of Heart and Breathing rates for all subjects in scenario 7.
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