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A B S T R A C T   

Remote sensing (RS) has been suggested as a tool to spatially monitor the status of peatland ecosystem func-
tioning after restoration. However, there have been only a few studies in which post-restoration hydrological 
changes have been quantified with RS-based modelling. To address this gap, we developed an approach to assess 
post-restoration spatiotemporal changes in the peatland water table (WT) with optical (Sentinel-2 and Landsat 
7–9) and radar (Sentinel-1) imagery. We tested the approach in eleven northern boreal peatlands (six restored, 
and five control sites) impacted by forestry drainage in northern Finland using Google Earth Engine cloud 
computing capabilities. We constructed a random forest regression model with spatiotemporal field-measured 
WT data as a dependent variable and satellite imagery features as independent variables. To assess the spatio-
temporal changes, we constructed representative maps for situations before and after restoration, separately for 
early summer high-water and midsummer low-water conditions. To further quantify temporal changes during 
2015–2023 and to test their statistical significance, we conducted a bootstrap hypothesis test for the areas near 
the restoration measures and similar areas in the control sites. The regression model had a relatively good fit and 
explanatory capacity (overall R2 = 0.71, RMSE = 6.01 cm), while there were notable site-specific variations. The 
WT maps showed that the post-restoration changes were not uniform and concentrated near the restoration 
measures. The bootstrap test showed that the WT increased more in the restored areas (4.7–8.8 cm) than in the 
control areas (0.1–5.2 cm). Our results indicate that restoration impact on surface hydrology can be quantified 
with multi-sensor satellite imagery and a machine learning approach in treeless peatlands.   

1. Introduction 

Peatlands cover 3% of global land cover (Xu et al., 2018) and 11% of 
them are degraded, mainly due to drainage for forestry, agriculture and 
peat extraction (Leifeld and Menichetti, 2018). In pristine conditions, 
peatlands offer many critical ecosystem services and support biodiver-
sity (Bonn et al., 2016), whereas degraded ones are known to negatively 
impact emissions (e.g. Leifeld and Menichetti, 2018; Wilkinson et al., 
2023), leaching (e.g. Nieminen et al., 2017; Marttila et al., 2018) and 
local biodiversity (Chapman et al., 2003). Global peatland degradation 
has increased the pressure on restoration activities for gaining more 
pristine-like ecosystem structure and functions (e.g. Kareksela et al., 

2015) and thus reversing drainage-induced negative effects. For 
instance, in the European Union, the proposed nature restoration law is 
likely to launch a significant increase in restoration actions on peatlands, 
especially in northern Europe (European Commission, 2023). 

In typical boreal forestry-drained peatlands, artificial drainage net-
works decrease water table (WT) level in peat layers and increase WT 
fluctuation (Prevost et al., 1997; Haapalehto et al., 2014). Additionally, 
drainage disconnects the surface and near-surface water flow pathways 
with the surrounding catchment (Tahvanainen, 2011; Sallinen et al., 
2019; Ikkala et al., 2022). This leads to peatland degradation as the 
water supply to the peat layers is limited (Holden et al., 2006). A low-
ered WT exposes peat to aerobic decomposition (Whittington and Price, 

* Corresponding author at: Natural Resources Institute Finland (Luke), Paavo Havaksen tie 3, FI-90570 Oulu, Finland. 
E-mail address: aleksi.isoaho@luke.fi (A. Isoaho).  

Contents lists available at ScienceDirect 

Remote Sensing of Environment 

journal homepage: www.elsevier.com/locate/rse 

https://doi.org/10.1016/j.rse.2024.114144 
Received 30 October 2023; Received in revised form 26 March 2024; Accepted 27 March 2024   

mailto:aleksi.isoaho@luke.fi
www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
https://doi.org/10.1016/j.rse.2024.114144
https://doi.org/10.1016/j.rse.2024.114144
https://doi.org/10.1016/j.rse.2024.114144
http://creativecommons.org/licenses/by/4.0/


Remote Sensing of Environment 306 (2024) 114144

2

2006; Itoh et al., 2017), causing carbon dioxide emissions (Leifeld and 
Menichetti, 2018; Wilkinson et al., 2023) and increased leaching of ni-
trogen, phosphorus, and dissolved organic carbon to the downstream 
waterbodies (Nieminen et al., 2017; Marttila et al., 2018). 

Traditionally, restoration of forestry-drained peatlands has particu-
larly been conducted by damming and infilling ditches as well as har-
vesting trees to decrease local evaporation (Andersen et al., 2017). 
However, lately in Finland, restoration has also been conducted by 
directing the water flow routes to the unditched peatland areas (Autio 
et al., 2018; Kareksela et al., 2021; Isoaho et al., 2023) suffering from 

adjacent drainage (Sallinen et al., 2019). The restoration method has 
only recently been systematically introduced and lacks scientific 
knowledge regarding its efficiency (Isoaho et al., 2023). 

Previously, the restoration impact and success have been assessed 
with point-based field measurements and monitoring such as standpipe 
wells and vegetation plots. In Finland, an increased WT has been the 
most commonly used indicator for hydrological changes which are 
usually the primary abiotic target in restoration actions (Haapalehto 
et al., 2014; Menberu et al., 2016). However, point-based monitoring 
measures do not account for the spatial variability in the restoration 

Fig. 1. The locations of the study sites, restoration measures, water table measurement points and buffers. Stars indicate manual and automatic logger water table 
measurement locations. Removed measurement points refer to points which were removed from the dataset used in the analyses (see section 2.2). Buffers for satellite 
data collection for statistical analyses (see section 2.5.2) are in true size. The scale between the sites varies; the grid size is identical for all sites. Location map 
contains main roads and water bodies for visibility. Aerial photos and topographic database are open data from National Land Survey of Finland, acquired between 
2019 and 2024. 
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success and thus do not provide quantitative information on the 
impacted area (Haapalehto et al., 2014; Isoaho et al., 2023). Addition-
ally, extensive field monitoring is usually resource-demanding and 
sometimes impossible as some peatlands can be practically inaccessible. 
Therefore, several studies have suggested remote sensing (RS) based 
monitoring as a method for investigating the quantitative effects of the 
peatland restoration (Ikkala et al., 2022; Ball et al., 2023; Isoaho et al., 
2023). 

RS techniques have proven to be useful for upscaling field mea-
surement data and for hydrological monitoring in the boreal peatlands 
(Harris and Bryant, 2009; Burdun et al., 2020b; Lees et al., 2021; 
Räsänen et al., 2022; Burdun et al., 2023). In general, optical, thermal, 
as well as passive and active microwave sensors have been used to track 
changes in the surface soil moisture; however, RS cannot directly 
observe belowground changes in wetness (Li et al., 2021; Peng et al., 
2021). Nonetheless, in peatlands, it has been shown that the WT is often 
closely correlated with surface soil moisture due to the capillary con-
nectivity (Lafleur et al., 2005; Strack and Price, 2009; Irfan et al., 2020) 
and also connected to the vegetation patterns (Breeuwer et al., 2009; 
Potvin et al., 2015), both of which can be tracked with RS (Meingast 
et al., 2014; Räsänen and Virtanen, 2019; Wigmore et al., 2019; Räsänen 
et al., 2020; Villoslada et al., 2023; Pang et al., 2023). In the same vein, 
recent studies from peatlands have indicated that optical imagery cor-
relates well with the WT or soil moisture (Burdun et al., 2020b; Räsänen 
et al., 2022; Kolari et al., 2022; Burdun et al., 2023), and even better 
than microwave or thermal data (Burdun et al., 2020a; Räsänen et al., 
2022). Nevertheless, synthetic aperture radar (SAR) observations have 
slightly improved the peatland water table modelling accuracy when 
utilised together with optical imagery (Räsänen et al., 2022). SAR im-
agery has also been used successfully to monitor WT and moisture dy-
namics in water-saturated environments (Bechtold et al., 2018; Millard 
and Richardson, 2018; Asmuß et al., 2019; Lees et al., 2021; Räsänen 
et al., 2022). 

Of the optical variables, particularly, short-wave infrared (SWIR), 
near-infrared (NIR) and red reflection have been shown to be sensitive to 
changes in the peatland hydrology (Harris and Bryant, 2009; Kolari 
et al., 2022; Räsänen et al., 2022; Isoaho et al., 2023). Other spectral 
indices have been used with varying success (Meingast et al., 2014; 
Kolari et al., 2022; Isoaho et al., 2023). In some studies both vegetation 
and moisture indices have correlated with on-site moisture (Zhang et al., 
2014; Kalacska et al., 2018; Šimanauskienė et al., 2019), while other 
studies have indicated that the index-moisture relationship is weak or 
non-existent (Kolari et al., 2022; Isoaho et al., 2023). Typically, the RS- 
based approaches for estimating WT have performed well in peatlands in 
which tree cover is sparse (Räsänen et al., 2022; Burdun et al., 2023), 
which is a typical trait for the central parts of large northern aapa mire 
complexes. 

As restoration usually has large-scale hydrological impacts on peat-
lands, relevant changes in the WT can possibly be seen with a coarser 
spatial (>10 m) resolution. This enables the use of satellite imagery for 

temporal as well as spatial modelling (Kalacska et al., 2018; Burdun 
et al., 2020b; Räsänen et al., 2022; Jussila et al., 2023). Optical satellite 
imagery captured by Landsats 4–9 (L4–9) and Sentinel-2 (S2), and SAR 
satellite imagery captured by Sentinel-1 (S1), provide a sufficient spatial 
and temporal resolution for peatland monitoring (Räsänen et al., 2022). 
This provides an opportunity to assess the restoration impact remotely. 
However, spatiotemporal changes in the peatland hydrology, such as 
changes in the WT level, caused by the restoration have not been studied 
with multi-sensor satellite imagery before. 

To address the knowledge gaps in the use of satellite imagery in the 
restoration monitoring, we construct a semi-automated machine 
learning approach for hydrological peatland restoration impact assess-
ment using a combination of field measurement data and open access RS 
data. Our more specific objectives are as follows: (1) to examine how 
well the WT changes can be tracked with optical and radar satellite 
imagery, (2) to assess the spatial post-restoration WT change during 
high-water and low-water conditions, and (3) to statistically test the 
magnitude of the WT change in areas impacted by hydrological resto-
ration and in control areas. 

2. Methods 

2.1. Study sites 

We studied six restored open peatlands and five control sites in 
Finland in similar climatic conditions (Fig. 1, Table 1). Before restora-
tion, all the studied sites were mostly unditched but suffering from 
adjacent drainage. In upper catchment areas of the sites, drainage is 
maintained at the peatlands and mineral soil lands that are used for 
forestry. While the upslope lands have discharged to the study sites in 
their former pristine state, ditching at the edge of the open peatlands has 
directed the upslope water flows past the study sites before their 
restoration. This has led to the intensification of tree growth near the 
edge ditches and to a significant decrease in the treeless peatland area. 
As a result, wet flarks (i.e. hollow depressions with almost permanent 
on-surface water) and Carex dominated vegetation has been replaced by 
Sphagnum dominated vegetation in large areas, which is a typical trend 
in the drainage-affected aapa mires in Finland (Granlund et al., 2022; 
Kolari et al., 2022; Kolari and Tahvanainen, 2023). Presumably, also the 
WT level has decreased due to the adjacent drainage. 

While traditional restoration by blocking the ditches is appropriate 
for some parts of these sites, a more cost-efficient measure is to channel 
the waters from the upslope ditch network back to the restoration site by 
excavating water-directing ditches into the unditched parts of the 
peatlands. Four of our study sites have been restored by channelling 
water back to the peatland through new directing ditches and by 
blocking drainage (hereafter VESPA sites), and two of our study sites 
almost exclusively by ditch blocking (hereafter TRAD sites). However, 
due to the dense tree cover dominating most of the TRAD restoration 
sites, we have delineated our study areas to the lower (also unditched 

Table 1 
Study sites’ climatic information, remote sensing monitoring area, restoration implementation times, implemented measures, field monitoring methods, and used 
control sites.  

Study site Haudanneva Vahtisuo Vihtaneva Kurkineva Iso Leväniemi Loukkusuo 

Annual mean temperature* 3.0 ◦C 2.8 ◦C 3.0 ◦C 2.9 ◦C 2.1 ◦C 2.3 ◦C 
Annual precipitation* 638 mm 702 mm 638 mm 612 mm 625 mm 765 mm 
Monitoring area 245 ha 189 ha 310 ha 133 ha 7 ha 19 ha 

Restoration Winter 2017–2018 Autumns 2018 and 
2019 

Autumn 2021 Winter 2021–2022 Autumn 2019 Summer 2020 

Water-directing ditches x x x x x  
Ditch infilling  x x  x x 
Damming x x x x x x 
Water table field monitoring 

method 
Manual 
measurements 

Manual measurements 
Manual 
measurements 

Manual 
measurements 

Automatic 
loggers 

Automatic 
loggers 

Control site Latvaneva Salmensuo Latvaneva Rimminneva Kirkaslampi Tammalampi  

* 1990–2020 average according to gridded climatology of Finland (Aalto et al., 2016; Finnish Meteorological Institute, 2023). 
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and open) part of the peatlands, making the studied areas rather similar 
to that of VESPA sites. All restoring measures have been implemented 
during 2018–2021. We have selected the control sites so that they are 
geographically close to the restored ones and unrestored during the 
study period, and have a similar vegetation and land cover pattern as the 
restored ones before their restoration. We have five control sites since 
two restored sites (Haudanneva and Vihtaneva) are located near each 
other and have similar peatland ecosystem types; thus, the same control 
site (Latvaneva) is used for both of these sites. 

The VESPA sites and their controls are drained but relatively wet 
aapa mires with clear microtopographic patterns of alternating wet 
flarks and drier strings on elevated positions. Part of the VESPA sites 
have previously been studied by Isoaho et al. (2023) but only in limited 
areas with drone imagery. The TRAD sites and their controls are smaller 
and located in the sloped, high ends of extensive aapa mire complexes; 
thus, they are drier than VESPA sites and their microtopographic 
structure is not as clear. The microtopography structure at the TRAD 
sites has partly disappeared because of the drainage impact. The TRAD 
sites and their controls have previously been studied by Ikkala et al. 
(2022), and we have followed their study area delineations. 

2.2. Field reference data 

We used two different field reference WT datasets from 2019 to 
2023: manually measured data from VESPA sites and automatic logger 
data from TRAD sites. The total number of used field measurements was 
268 (180 manual and 88 automatic logger measurements; Table 3). The 
WT was calculated in relation to local peatland surface, with a negative 
value indicating the levels below and a positive one above the surface. 
WT monitoring was carried out only at the restoration sites. 

The manual WT measurements from perforated plastic pipes were 
conducted at VESPA sites during the growing seasons of 2021 (Hau-
danneva, Vahtisuo) and 2021–2023 (Vihtaneva, Kurkineva) 3–4 times 
each year (Table 3). Each measurement site had 6–12 permanent pipes 
in locations with large wetness variability (Fig. 1). During the spring 
2023, we noticed that we lacked WT measurements from wet flarks; 
therefore, we conducted five extra measurements during the May 2023 
field campaing at Kurkineva to complement the dataset. We also 
removed three field measurement points from the dataset because they 
were not representative of the surrounding landscape and might have 
disturbed the modelling that utilised relatively coarse spatial resolution 
satellite imagery (see Fig. 1). These points were located, for example, in 

Table 2 
Used remote sensing bands and indices with the equations. Justifications for the different remote sensing variables are in Table S1.  

Variable Abbreviation Equation Reference 

Blue reflectance BLUE   
Green reflectance GREEN   
Red reflectance RED   
Near-infrared reflectance NIR   
Shortwave infrared band 1 reflectance SWIR1   
Shortwave infrared band 2 reflectance SWIR2   

Shortwave infrared transformed reflectance STR (1 − SWIR1)2

2*SWIR1 
Sadeghi et al., 2015 

Normalised Difference Vegetation Index NDVI NIR − RED
NIR + RED Tucker, 1979 

Enhanced Vegetation Index EVI 2.5*
NIR − RED

NIR + 6*RED − 7.5*Blue + 1 Liu and Huete, 1995 

Soil Adjusted Vegetation Index SAVI 1.5*
NIR − RED

NIR + RED + 0.5 Huete, 1988 

Tasseled cap Greenness* TCGreenness 

BLUE*( − 0.2941)+
GREEN*( − 0.243)+
RED*( − 0.5424)+
NIR*0.7276+

SWIR1*0.0713+

SWIR2*( − 0.1608)

Kauth and Thomas, 1976; Crist and Cicone, 1984 

Normalised Difference Water Index NDWI GREEN − NIR
GREEN + NIR McFeeters, 1996 

Modified Normalised Difference Water Index MNDWI GREEN − SWIR2
GREEN + SWIR2 Xu, 2006 

Normalised Difference Moisture Index NDMI NIR − SWIR1
NIR + SWIR1 Gao, 1996 

Normalised Difference Moisture Index 2 NDMI2 NIR − SWIR2
NIR + SWIR2 Gao, 1996 

Tasseled cap Wetness* TCWetness 

BLUE*0.1511+

GREEN*0.1973+

RED*0.3283+

NIR*0.3407+

SWIR1*( − 0.7117)+
SWIR2*( − 0.4559)

Kauth and Thomas, 1976; Crist and Cicone, 1984 

Tasseled cap Angle* and ** TCAngle arctan
(TCGreenness

TCBrightness

)

Powell et al., 2010 
Original VV backscatter VV   

Sine corrected VV backscatter*** VV_sine VV − sin(0.023*(doy − 140) ) Lees et al., 2021; Räsänen et al., 2022 
Original VH backscatter VH   

Sine corrected VH backscatter*** VH_sine VH − sin(0.023*(doy − 140) ) Lees et al., 2021; Räsänen et al., 2022 

Normalised polarisation of original backscatters Pol VH − VV
VH + VV Becker and Choudhury, 1988 

Normalised polarisation of sine corrected backscatters Pol_sine 
VH sine − VV sine
VH sine + VV sine  Becker and Choudhury, 1988; Räsänen et al., 2022  

* Landsat OLI tasseled cap coefficients (Baig et al., 2014) are used because the data are harmonised to the OLI sensor. 
** TCBrightness = BLUE * 0.3029 + GREEN * 0.2786 + RED * 0.4733 + NIR * 0.5599 + SWIR1 * 0.508 + SWIR2 * 0.1872. 
*** doy is the day of the year of the observation. 
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the middle of a narrow string or hummock surrounded by wet flarks. 
The logger WT monitoring was conducted in TRAD sites during the 

growing seasons 2019–2022 (Fig. 1). Both sites had two loggers in place, 
but only one logger per site was in the open area suitable for RS 
methods; therefore, we only utilised one logger per site. Loggers 
collected data half-hourly, but we calculated daily averages for the 
analysis. We measured the WT level several times from the logger pipe 
within the monitoring periods to calibrate the data in relation to the 
peatland surface. The calibration was based on the average error be-
tween the automated and manual measurement. 

2.3. Pre-processing of the satellite imagery 

We utilised the GEE cloud computing platform (Gorelick et al., 2017) 
for processing and acquiring the S2 and L7–9 surface reflectance im-
agery, and S1 C-band SAR imagery to model changes in the WT. First, we 
filtered out optical imagery that had >30% cloud cover. Leftover clouds, 
cloud shadows and snow were masked out with Scene Land Cover and 
Quality Assessment pixel classification for S2 and L7–9, respectively. 
Second, to enable the use of data from different sensors in the analysis, 
we harmonised all imagery to the L8–9 OLI sensor with Roy et al. (2016) 
proposed coefficients and slopes for L7 and with Zhang et al. (2018) 
proposed coefficients and slopes for S2. Third, after cloud masking and 
harmonisation, we calculated a set of spectral indices previously used 
for peatland and other wetness studies (Table 2, Table S1). Finally, we 
calculated averages between duplicate dates within the dataset as 
multiple optical datasets had overlapping observations. 

For S1, we included vertical transmit-vertical receive (VV) and ver-
tical transmit-horizontal receive (VH) data only from ascending orbit 
and applied preprocessing steps suggested by Mullissa et al. (2021) to 
improve data quality. These included additional border noise correc-
tion, speckle reduction with multi-temporal (Quegan and Yu, 2001) Lee 
Sigma filter with kernel size and number of images set to 5, and radio-
metric terrain normalisation (Hoekman and Reiche, 2015; Vollrath 
et al., 2020) with 10 m spatial resolution Digital Elevation Model pro-
duced by National Land Survey of Finland. We also calculated sine 
corrected VV and VH backscatters (Lees et al., 2021) by using the 
equation that has been better matched with Finnish growing season 
(Räsänen et al., 2022; Table 2). Additionally, we calculated normalised 
polarisation (Pol) from the backscatters. 

2.4. Modelling approach 

To generate data for model calibration and validation, we searched 
for cloud-free S2 data that were temporally as close as possible to the 
field measurement data (Table 3). With the manual WT data, we used 
the closest dated image, but if a suitable image was not found, we 
calculated time-weighted averages between two images captured before 
and after the field data measurement date. With the logger data, we only 
utilised measurements from the dates where a cloud-free image was 
available. We checked S2 image quality, such as clouds, cloud shadows 
and other possible errors manually for every image that was used for the 
construction of the model. RS data were collected from the pixel where 
the measurement point was located. As the availability of optical data 
was more limited due to cloud cover, we prioritised days with optical 
observations and utilised S1 SAR observations that were as close as 
possible with the optical observations even if SAR observation was 
available during the field measurement day. 

We used random forest regression (Breiman, 2001) for the model-
ling, with the field-measured WT being the response variable and sat-
ellite imagery metrics being the explanatory variables. Random forest 
was chosen due to its ability to deal with multiple multicollinear 
explanatory variables calculated from RS data (Belgiu and Drăguţ, 
2016). We set the number of trees to 500 as typically the increase in 
performance diminishes and the model stabilises after a few hundred 
trees (Rodriguez-Galiano et al., 2012; Probst et al., 2019). We conducted Ta
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10-fold cross-validation tests for tuning the number of variables tested 
(mtry) at each node parameter. The tests indicated that the model per-
formance was insensitive to mtry; thus, we set mtry to the 1/3 of all 
variables, i.e. the default value for the regression. 

Finally, we assessed model performance with the out-of-bag (OOB) 
evaluation which has been reported to be a conservative estimate of 
model fit when compared to an independent test set (Clark et al., 2010). 
OOB utilises bootstrapped subsamples to train models and tests the fits 
with samples not used in training data. Additionally, we conducted site- 
specific validations by training the model with the data from all other 
sites than the testing site, to further assess the modelling performance. 
The performance metrics were coefficient of determination (R2) and 
root-mean-square error (RMSE). We also extracted variable importance 
using % increase in mean square error statistic. 

We repeated full-model and site-fold fits 100 times and calculated 
means of the fitted predictions, and produced the performance metrics 
from the means to flatten single-run randomness of random forest. We 

also calculated mean variable importance from 100 full models and 
normalised the values between 0 and 100. We conducted modelling 
separately for multi-sensor (optical and SAR), optical only, and SAR only 
determine effect of differenct sensors. Regressions were conducted with 
R (version 4.2.1) with the randomForest (Liaw and Wiener, 2022) 
package. 

2.5. Restoration impact assessment 

2.5.1. Spatiotemporal assessment with representative imagery 
We assessed the spatial impact of restoration to the WT for two 

different time periods: the early summer in the beginning of the growing 
season (1 May – 15 June, hereafter ES) and the midsummer (1 July – 15 
August, hereafter MS). The ES situation represents the time-point when 
the WT is typically at its highest right after the snowmelt (Sallinen et al., 
2023). The MS situation represents the climax of the thermic summer 
with a high evaporation condition and when the WT is at its lowest due 

Fig. 2. Methodological flow chart. WT refers to water table. Spectral indices are explained in Table 2.  
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Table 4 
Number of buffer observations per site per year for filtered buffer data.  

Study site/ 
Control site 

2015 2016 2017 2018 2019 2020 2021 2022 2023 

Haudanneva/ 
Latvaneva 

72 120 120 528 312 288 480 336 384 

Vahtisuo/ 
Salmensuo 72 24 240 696 336 528 384 456 360 

Vihtaneva/ 
Latvaneva 

108 216 180 792 432 396 684 504 612 

Kurkineva/ 
Rimminneva 

40 50 90 270 170 110 260 160 160 

Iso Leväniemi/ 
Kirkaslampi 

60 48 120 372 240 288 324 180 276 

Loukkusuo/ 
Tammalampi 68 68 221 544 306 289 391 255 306  

Fig. 3. Scatterplots between mean out-of-bag predicted over 100 fits and observed water tables with 1:1 line for different model types (A) and bar chart of the 
normalised relative variable importance (i.e. linearly scaled so that the sum of the importance of all variables equals 100) based on the increase in mean square error 
of the predictions for different model types over 100 fits (B). 
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to the low effective precipitation in the study region. Both time points 
are important for estimating the restoration impacts. The ES shows the 
maximum discharge directed to the area, while the MS shows the 
restoration impact when the water sources to peatland vegetation are 
the most limited. 

To quantify spatial dynamics of the WT change, we constructed 
representative pixel-by-pixel imagery for both ES and MS situations 
describing average conditions before and after restoration by utilising 
multitemporal preprocessed L8–9 and S2 images for optical data (ob-
servations from 2013 onwards), and S1 for SAR data (observations from 
2015 onwards). We did not include L7 for the composition because of 
the scan line corrector failure has led to striping of imagery, which could 
increase the uncertainty when producing representive spatial compos-
ites. For the optical imagery, we calculated pixel-by-pixel 40th percen-
tile composites following the methodology of Pitkänen et al. (2024), 
who indicated that this construction strategy produces a better outcome 
than the more common median-based compilations as the latter might 
have more cloud fragments or haze and low-reflectance areas derived 
from cloud shadows that bypass the filters (Fig. 2). For the SAR imagery, 
we calculated medians, as the image quality is less affected by clouds 
and shadows. We derived representative images for control sites utilis-
ing same data collection years as for the corresponding restoration site 
and constructed all composites with nearest neighbour resampling in 10 
m resolution. Finally, we predicted the WT from the representative 
imagery with the full regression model 100 times each, and calculated 
mean of the predicted WT rasters to again eliminate single-run 
randomness. To assess the change caused by restoration, we sub-
tracted the before-restoration WT raster from the after-restoration WT 
raster and repeated the procedure separately for the ES and the MS 
situations. 

2.5.2. Temporal assessment with a bootstrap test 
To assess if the restoration increased WT with time-series data, and to 

produce uncertainty assessment within restoration-impacted areas, we 
conducted a bootstrap procedure test (Efron and Tibshirani, 1994). For 
this, we placed small buffers (radius 15 m, see Fig. 1) for restoration and 
control sites. In the VESPA sites, we placed the buffers’ centres around 
50 m from the end of every water-directing ditch towards the assumed 
direction of peatland water flow or around the same distance from filled 
drainage in a few hundred-metre intervals. In the TRAD sites, we placed 
the buffers also in treeless and filled drainage blocks. In the control sites, 
we sampled the buffer locations randomly around 50 m from the edges 
of study areas so that there were as many buffers as in the corresponding 
restoration site, except for Latvaneva which had two restoration coun-
terparts; therefore, we calculated average between the number of 
buffers in two counterparts. By utilising multiple small buffers per site, 
we could more reliably assess the annual variations in the data, as well 
as flatten the variations caused by different pixel alignment of different 
optical datasets. 

We tabulated the spectral bands, indices and SAR data for all pre- 
processed L7–9 and S1–2 images for the buffers during the snow-free 
periods (1 May – 31 October) for 2015–2023. We selected this period 
based on S1 availability and to see the multiyear variations. We also 
wanted to remove the effect of possible clouds that bypassed the filters 
as well as make the data between restoration site and its control as 

comparable as possible before the statistical testing. Thus, we only 
accepted dates where all buffers in the corresponding restoration and 
control site had spectral data. This filtering removed all the dates when 
masked cloud, cloud shadow, snow or L7 line stripe covered one or 
multiple buffers, leading to a more comparable dataset (Table 4). 
Finally, we utilised such SAR observations which were temporally as 
close as possible with the utilised optical observation. We used the 
multi-sensor regression model to predict WT from merged dataset 100 
times and calculated the mean of predictions. 

We used bootstrap procedure to test if the predicted WT before and 
after the restoration differed statistically significantly from each other 
and if the difference in the restoration buffers WT differed from that in 
the control buffers. Bootstrapping bypasses the distributional assump-
tions while keeping the test power high, making it suitable for our test 
setup. The approach creates a new sample from a given sample with 
replacement (here before and after restoration time periods, individu-
ally) and conducts a hypothesis test between two replaced samples. This 
is repeated 1000 times and, in each iteration, procedure calculates the 
test statistic and the difference between the sample means. As boot-
strapping produces 1000 different results, we determined 95% confi-
dence intervals for the test statistic and the mean difference in the 
samples and calculated the modified empirical p-value (Davison and 
Hinkley, 1997) from the results. We repeated the procedure for every 
buffer dataset individually. 

3. Results 

3.1. Model performance and variable importance 

The constructed multi-sensor random forest regressions achieved an 
R2 of 0.71 and an RMSE of 6.01 cm, while the separate models con-
structed from optical (R2 = 0.62, RMSE = 6.95 cm) and SAR (R2 = 0.32, 
RMSE = 9.25 cm) data achieved less accurate fits (Fig. 3A). The most 
important optical variables were STR and SWIR1 followed by NIR and 
SWIR2 (Fig. 3B). TCGreenness was the most important spectral index. 
From the SAR variables, VH and VH_sine were the most important ones, 
with VH outperforming the sine corrected version. The rest of the RS 
variables had small (<5%) contribution to the multi-sensor model. 

Based on the site-specific validations, the models were able to predict 
values for the sites that were not used in the construction of the model 
with varying success (R2 = 0.27–0.88, RMSE = 4.57–10.45 cm; Table 5), 
with the performance being close to but lower than the full model’s site- 
specific out-of-bag estimates (R2 = 0.39–0.88, RMSE = 4.05–9.16 cm; 
Table 5). 

3.2. Spatial impact of the restoration 

Both restoration methods (water-directing ditches and ditch block-
ing) had large local impacts on the WT of the restoration sites but they 
did not affect the WT universally, with differences within and between 
the sites (Fig. 4; Fig. 5). The control sites had changes in the predicted 
WT, but the spatial patterns were more random combared to the 
restored sites. There were also differences in the restoration impact 
between the ES and the MS. In general, the overall restoration impact to 
the entire peatland WT was moderately small, in most cases only an 

Table 5 
Site-specific mean multi-sensor model fits over 100 iterations. OOB refers to out-of-bag evaluation, R2 to coefficient of determination, and RMSE to root-mean-square- 
error.  

Site Full model OOB R2 Site-fold R2 Full model OOB RMSE Site-fold RMSE 

Haudanneva 0.80 0.81 4.84 4.69 
Vahtisuo 0.88 0.88 4.05 4.57 
Vihtaneva 0.39 0.32 5.26 6.06 
Kurkineva 0.50 0.31 6.13 8.59 
Iso Leväniemi 0.44 0.27 9.16 10.45 
Loukkusuo 0.71 0.74 5.22 6.57  
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Fig. 4. Spatial water table level change of the study and control sites between before and after the restoration measures. Early summer refers to 1 May – 15 June and 
Midsummer to 1 July – 15 August. Conducted restoration measures are shown with lines. 
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additional increase of a few cm compared to the control sites (Fig. 5). 
By visually assessing the VESPA sites’ WT change maps, the most 

impact on Haudanneva ES occurred in the north-east in which the WT 
increased up to 30 cm. The restoration also had an impact on the 
southern part of the peatland increasing the WT locally by 10–30 cm. 
Haudanneva’s control site ES had no clear spatial patterns in the 
modelled WT change but had areas where the WT increased up to 21 cm. 
During the MS, the WT increased in the entire peatland area both in 
Haudanneva and the control without clear spatial patterns. 

In Vahtisuo ES, there was a large impact caused by two water- 
directing ditches increasing the WT on average by 20–25 cm in a large 
area, while the impact of the most western ditch was lower. Ditch 
infilling increased the WT especially west of the water-directing ditches 
and some increase was visible on the eastern part of the peatland. Some 
increasing change on the WT was also visible in the northern part of the 
site although there are no restoration measures nearby. Vahtisuo’s 
control site ES WT change varied between positive (20 cm increase) and 

negative (5 cm decrease) in the entire peatland area. During the MS, 
Vahtisuo results were very similar to Haudanneva. 

In Vihtaneva, there were large-scale changes in the water supply as 
the restoration was implemented in multiple locations. WT increased 
across the peatland, with exceptions in some smaller areas. The western 
part of the peatland had large areas where restoration increased the WT 
up to 25 cm, both during the ES and the MS. Additionally, the south- 
eastern part near the ditch-infillings and water-directing ditches had a 
positive change in the WT for both periods. The five large water- 
directing ditches in the eastern part of the peatland functioned better 
during the ES than the MS. The control site’s WT had a decreasing trend 
during the ES but small increasing trend without clear patterns during 
the MS. 

At Kurkineva, restoration increased the WT in the north-western part 
of the peatland. The area around the end of the most northern water- 
directing ditch endpoint had the clearest positive, around 20 cm, 
change in the WT. The longest ditch in north-west had large impact, 

Fig. 5. Histograms of predicted water table rasters in restoration and corresponding control sites.  
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around 25 cm increase, both during the ES and the MS. Two ditches in 
the middle seemed to direct some water to the peatland during both of 
the time periods, increasing the WT from a few to 20 cm. The southern 
ditch might have led water to the peatland as there seemed to be a local 
increase in the WT during the ES, but it was hard to judge if this was 

caused by the restoration itself. Kurkineva’s control site had decreasing 
WT changes during the ES and mild increases during the MS, but the 
spatial patterns were not as clear as in Kurkineva. 

In the TRAD sites, the restoration had an increasing effect on the WT 
on a large spatial scale. Iso Leväniemi had a notable, 10–20 cm increase 

Table 6 
Bootstrapped hypothesis test results with the predicted water table buffer data from 2015 to 2023.  

Restored site/Control site Treatment buffer Test statistic 95% confidence interval Difference in mean Difference 95% confidence interval p-value 

Haudanneva/Latvaneva Restored 12.01–16.66 8.75 7.51–9.94 0.001 
Control 8.78–13.12 5.19 4.25–6.14 0.001 

Vahtisuo/Salmensuo 
Restored 10.61–15.17 5.72 4.86–6.58 0.001 
Control 6.23–10.36 3.81 2.91–4.74 0.001 

Vihtaneva/Latvaneva 
Restored 16.27–20.76 6.35 5.70–7.02 0.001 
Control 4.11–7.98 2.95 2.02–3.83 0.001 

Kurkineva/Rimminneva Restored 7.40–12.10 7.21 5.67–8.74 0.001 
Control 1.14–5.26 2.23 0.83–3.57 0.001 

Iso Leväniemi/Kirkaslampi Restored 9.45–13.70 6.04 5.03–7.03 0.001 
Control 0.73–4.69 1.19 0.34–2.14 0.005 

Loukkusuo/Tammalampi 
Restored 7.57–11.93 4.68 3.68–5.67 0.001 
Control − 1.83–2.02 0.07 − 0.89–0.97 0.431  

Fig. 6. Predicted water table within the constructed buffers at restoration and corresponding control sites in growing seasons of 2015–2023 (A) and summarised for 
before and after restoration (B). The more accurate time of restorations are explained in Table 1. 
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in the WT in the northern part during the ES, but the entire site had a 
similar-scale increase during the MS. The control site had an opposite 
WT change during the ES but a somewhat similar but milder change 
during the MS. 

Loukkusuo had two different key areas in the ES with a notable in-
crease in the WT: ditch infilling areas in the western tip and south- 
eastern part of the peatland, where the WT increased by 10–30 cm. 
During the MS, the increase in the WT occurred almost in the entire 
peatland area, but the same key areas had larger changes. The control 
site had similar but milder changes with a large WT increase during both 
time periods, but the control lacked clear spatial WT increase patterns. 

3.3. Temporal impact on water table level 

In every restoration treatment buffer, the predicted WT increased 
statistically significantly after the restoration measures based on the 
bootstrap test (p-value = 0.001; Table 6). In most of the cases, an in-
crease in the control treatment also occurred. The increase was larger in 
the restoration treatments than in the controls in every study site pair-
ing. The largest changes occurred in Haudanneva and Kurkineva, while 
the controls in the TRAD sites had the smallest changes. 

By looking at the individual years (Fig. 6), the predicted WT 
increased in every restoration treatment during the restoration year or in 
the next growing season. Increase in the control treatment could be 
observed in the later part of monitoring period. In 2015 and 2016, the 
WT was universally high in the study sites. This was caused by a lack of 
drier midsummer images and a low overall number of images. Moreover, 
the year 2018 was a universally dry year in all sites. 

4. Discussion 

4.1. Modelling WT change with multi-sensor imagery 

We have shown that spatial variation in WT can be predicted with 
optical and radar satellite imagery in open peatland areas with a rela-
tively straightforward approach utilising a machine learning regression. 
Moreover, we have been able to show that our approach can be applied 
to detect peatland restoration impact to WT levels. This concurs with 
earlier studies by, e.g. Burdun et al. (2020a, 2020b, 2023) and Räsänen 
et al. (2022) who have successfully used optical satellite imagery to 
track temporal changes in open peatland WT. However, complementing 
the earlier studies, we have been able to illustrate that the spatial pat-
terns in the WT change are not universal. Furthermore, our approach 
can be used in quantitative restoration impact assessment for detecting 
the hydrological impacted area of restoration. This is evidenced 
particularly by the relatively new restoration method of reconnecting 
aapa mires to their original watersheds through water-directing ditches, 
the effectiveness of which has not been widely analysed before (Isoaho 
et al., 2023). Therefore, we also show that in addition to traditional 
peatland restoration by ditch blocking, the water-directing ditch resto-
ration is a valid method for the hydrological restoration of boreal aapa 
mires. 

The constructed model had a relatively good predictive performance 
(R2 = 0.39–0.88; RMSE = 4.04–9.16; overall R2 = 0.71, RSME = 6.01). 
Additionally, the site-specific full model out-of-bag predictions varied 
from relatively poor to good (Table 5). The best fit was observed in sites 
in which the number of WT measurements was low and in which the 
field monitoring was conducted during one summer only, and in which 
the range of measurements was high (Haudanneva, Vahtisuo). In four 
other sites, the fit was poorer but the model was still able to produce a 
clear positive correlation with a rather small error between the observed 
and predicted WT. This was also the case with the site-specific valida-
tions as the performance metrics were generally similar but worse 
compared to the out-of-bag predictions. This is probably caused by site- 
specificity (e.g. Räsänen et al., 2022) and different WT measurement 
ranges between the sites, which challenges our approach to generate a 

universal modelling approach for WT prediction as random forest can 
not predict outside the training data WT range. Our results still indicate 
that the model can detect change in the WT even if the site is not 
included in the model construction, while the actual magnitude of the 
predicted WT change can be slightly biased. Being able to model outside 
the training sites supports the justification for our approach of utilising 
control sites that were not monitored in field as the control sites were 
needed to quantify the restoration impacts. This finding also opens 
possibilities to apply our model to large-scale spatial monitoring of 
similar boreal peatlands, but more validation sites are needed. 

It has been suggested that the RS-based peatland WT prediction ac-
curacy decreases when the site becomes drier. Burdun et al. (2023) have 
discussed that the relationship of the on-site WT and optical RS disap-
pears after − 40 cm, which is also in line with Räsänen et al. (2022) 
whose modelling approach functions better for wetter peatland sites. 
This is probably due to the lost capillary connections between the deeper 
WT and the peatland surface (Bechtold et al., 2018; Asmuß et al., 2019). 
The same phenomenon can be observed in our model (Fig. 3A) as the WT 
range for the prediction is around − 30 to 10 cm, while the observed 
values ranged between − 42 to 20 cm. In practice, this means that the WT 
levels of drained conditions prior the restoration might not be possible to 
estimate with RS if the site is well drained. 

Our study produced further evidence that optical imagery seems to 
provide sufficient RS information for open peatland WT modelling, as 
optical variables were the most important, and the model constructed 
from optical variables performed nearly as well (R2 = 0.62, RMSE =
6.95) as the multi-sensor model (R2 = 0.71, RMSE = 6.01). Optical 
imagery does not directly reflect the WT, but it does observe changes in 
soil moisture, vegetation, and land cover, which are connected with WT 
dynamics (Lafleur et al., 2005; Breeuwer et al., 2009; Strack and Price, 
2009; Potvin et al., 2015; Irfan et al., 2020). The dynamics can be 
visually interpreted from optical imagery as higher moisture causes 
reflectance values to decrease, making the areas darker (Chasmer et al., 
2020). Still, multiple studies have suggested that SAR (Kim et al., 2017; 
Bechtold et al., 2018; Dabrowska-Zielinska et al., 2018; Millard and 
Richardson, 2018; Lees et al., 2021; Räsänen et al., 2022) or thermal 
imagery (Wigmore et al., 2019; Isoaho et al., 2023) could be used 
independently or combined with optical data to minimise prediction 
uncertainty. Our results partly support these findings as the combination 
of SAR and optical data produced the best estimates but the models 
using SAR data alone functioned much worse than the models using 
optical data. Nevertheless, a multi-sensor approach has limitations as 
the combination of multiple datasets decreases the temporal availability 
which is defined by the most sparse dataset and increases the processing 
work required for successful datamerging. Additionally it has been 
indicated that SAR can be utilised best when WT range is around − 20 to 
− 60 cm (Asmuß et al., 2019), making it less usable in highly saturated 
sites. In our case, most of the WT measurements were out of this range 
and the optical data functioned better than SAR; therefore optical im-
agery might be more practical for WT estimations in highly wet aapa 
mires and possibly in different wetland ecosystems. Also, by utilising 
only optical data, monitoring might be possible as far back as the 1980s 
with Landsat imagery. 

As for the thermal satellite imagery, recent studies (Worrall et al., 
2019, 2022) have demonstrated that land surface temperature from the 
MODIS TERRA satellite can be used to explain the post-restoration 
changes at the landscape scale. However, the highest spatial resolu-
tions for northern latitudes are currently the 60 m resolution of L7, and 
100 m of L8–9 thermal bands which might not be sufficient for the 
smaller spatial-scale restoration assessments. In addition to optical, SAR, 
and thermal data, also topographic data can be used in the restoration or 
degradation impact assessments (Carless et al., 2019; Ikkala et al., 
2022), but the use of these data are limited by low temporal availability. 
Additionally, climatic variables have shown promise with the hydro-
logical modelling of boreal peatlands (Gong et al., 2012; Sallinen et al., 
2023). In the aapa mire context, ES WT is highly affected by snow melt 
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input, whereas MS WT is related to summer precipitation and evapo-
transpiration conditions (Sallinen et al., 2023). However, the currect 
spatial resolution of climatic grid (1 km; Aalto et al., 2016) is too coarse 
for detailed spatiotemporal modelling. Despite these restrictions, further 
tests with multi-source optical-SAR-thermal-climate approaches should 
be conducted in the future work. 

Our methodological approach provides average WT change in a 10 m 
pixel size, but due to the relative coarse spatial resolution, the high 
spatial heterogeneity, a characteristic of northern peatlands (e.g. 
Räsänen and Virtanen, 2019), is lost. Higher spatial resolution RS im-
agery, e.g. from uncrewed aerial systems, could be utilised to provide 
more in-depth information about the restoration impacts (Ikkala et al., 
2022; Isoaho et al., 2023). The higher resolution could also be utilised 
for example by capturing the RS spectral values within a small area 
around the measurement points and then harmonising this with coarse- 
resolution satellite imagery (Zhang and Zhao, 2019). The main chal-
lenge is labour intensity if a long-term time-series is aimed for even with 
a moderate temporal resolution. 

Based on the variable importance information, single optical bands 
have contributed more than different spectral indices. This perhaps 
surprising result is in line with earlier studies (Kolari et al., 2022; Isoaho 
et al., 2023). Moreover, SWIR bands had the highest contribution, which 
is also a somewhat expected result as earlier work has had similar 
findings (Räsänen et al., 2022). The STR index, solely based on SWIR1 
band (~1600 nm), has the highest variable importance of the separate 
variables. The STR index has recently been used for the assessment of 
aapa mires’ “wetness” in the entire of northern Finland but without 
large-scale validation or comparison to other bands or indices (Jussila 
et al., 2023). Our results validate that STR can be used in peatland 
wetness monitoring. Therefore, our results indicate that single bands 
might provide enough information for the hydrological monitoring of 
open peatlands, and the use of indices utilising multiple bands or trap-
ezoid models (Sadeghi et al., 2017; Burdun et al., 2023) is not neces-
sarily needed. Additionally, the trapezoid models require model 
parameterisation, which makes them less straightforward to use than 
the simpler indices. Nevertheless, more research is needed to validate 
our findings, and to determine how well single bands function outside 
the aapa mires. 

The lower importance of SAR compared to optical data is a somewhat 
expected result based on a previous study with a corresponding multi- 
sensor approach (Räsänen et al., 2022). Similar SAR explanatory ca-
pacity have been reported in some earlier studies (Bechtold et al., 2018; 
Asmuß et al., 2019; Räsänen et al., 2022), and our results reinforce these 
findings. We could have included more preprocessing steps to improve 
the quality of the SAR data, such as incidence angle corrections (Bech-
told et al., 2018) but the method has only slightly improved the corre-
lation between WT and SAR in boreal peatlands (Räsänen et al., 2022). 
Additionally, nonlocal pixel filtering (Manninen and Jääskelainen, 
2022; Manninen et al., 2022) could be integrated into GEE and utilised 
in the future work. 

Even though we have obtained promising results, our method is not 
entirely problem-free. As the capture of good-quality satellite images is 
hampered by cloud cover, we could not always merge the field data and 
satellite imagery dates as closely as would have been optimal. Addi-
tionally, our representative image strategy is heavily affected by a large 
number of observations from the extremely dry year of 2018 (Rinne 
et al., 2020; Jussila et al., 2023). This has probably led to post- 
restoration imagery (restored and control site) being modelled consis-
tently wetter than pre-restoration in MS situations. Still, in most cases, 
the spatial patterns caused by restoration are still clearly apparent. 
However, in Haudanneva and Vahtisuo and their controls, this is not the 
case and the post-restoration patterns in the MS were unclear and messy. 
These possible modelling artifacts might be due to the time-periods 
utilised in the representative imagery; they were more affected by 
drought of 2018 compared to all other sites because the S2 imaging 
frequency was lower in 2017 compared to 2018 onwards, and L8 

frequency was even lower, despite being available since 2013. In the 
future, the data availability might not be as apparent challenge, because 
S2 availability is nowadays high and proper pre-restoration imagery that 
captures multiyear variation can be constructed without outlier years. 

4.2. Impact of the restoration 

Based on our result maps, the increased water sources have the most 
evident effect near the water-directing ditches and infilled drainage. The 
non-uniform spatial patterns of post-restoration hydrological changes 
suggest that the restoration impact assessment should be conducted 
spatially either with abundant point-based measurements or wall-to- 
wall RS data. The non-uniformity also challenges the “best-pixel 
method” (Burdun et al., 2020b, 2023) in which the field-based WT data 
are linked to the satellite imagery pixel in the peatland area with the 
highest correlation with the WT measurement. As the “best-pixel” might 
not be located close to the WT measurement point, its temporal trends in 
the WT might be very different from that of the WT measurement, 
particularly after the restoration has been conducted. 

In our study sites, the large flarks in the middle of the peatlands 
within the supposed water flow routes were modelled to be mostly un-
changed after the restoration. There are multiple possible reasons for the 
observation. First, the model does not predict correctly the WT in the 
open water areas with a WT > 10 cm (Fig. 3A). The difference in the 
relationship between the STR index and highly saturated soil compared 
to less saturated soil has been shown in laboratory conditions e.g. by 
Sadeghi et al. (2023). Additionally, random forest does, by nature, give 
conservative predictions to extreme values and cannot predict outside 
the training data value range (Coulston et al., 2016). Since we had a 
limited amount of high WT measurements, extreme values are not very 
accurately predicted. Another reason for the unchanged flarks could be 
that they already have a high WT level due to a large groundwater 
supply and therefore, they are not heavily impacted by drainage and 
possibly neither by restoration. Moreover, the restoration impact seems 
to be connected to the distance from the restoration measures, which is 
also partly visible in the study by Isoaho et al. (2023), and the most of 
the flarks are located far away from the measures. 

The hydrological impact also differed between the sites. The clearest 
overall impact could be seen in the TRAD sites as the WT of the entire 
study sites increased (Fig. 4) and the bootstrap test showed a high dif-
ference between the before and after-restoration situations, while the 
controls had minor (Kirkaslampi) or statistically insignificant changes 
(Tammalampi; Table 6). This is backed by time-series data (Fig. 6) as the 
relationship between the treatments changes drastically after the 
restoration. In the VESPA sites, the changes were more local, while the 
overall changes of the sites were rather mild, only increases of few 
centimetres (Fig. 5). The local changes were more drastic and up to 30 
cm WT increases were predicted at each VESPA site near the water- 
directing ditches (Fig. 4). The post-restoration increase in the WT has 
also been reported by multiple studies utilising continuous point-based 
monitoring with limited spatial coverage (Armstrong et al., 2010; 
Haapalehto et al., 2014; Menberu et al., 2016). In general, it seems that 
the average restoration impact on the entire peatland’s WT is relatively 
minor, only a few cm increase (Fig. 4, Fig. 5). 

The restoration impact assessment is often challenged by the within 
and between-year differences in the peatland hydrological conditions (e. 
g. Rinne et al., 2020; Lees et al., 2021; Jussila et al., 2023). Our results 
provide evidence for the spatial differences between the high-water ES 
and low-water MS situations (Fig. 4) and the overall WT differences 
between years (Fig. 6). As the hydrological conditions vary in time, the 
restoration impact assessment cannot be conducted with single time- 
point or even with single-year data; instead, the monitoring period 
should span multiple years. To further constrain uncertainties in the 
impact assessment judgement, also control sites need to be used. In our 
case, the partly limited monitoring period challenges our findings; part 
of the changes seen after restoration can potentially be attributed to the 
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between-year variation as shown by the changes in the control sites. 
However, only a two-year monitoring after the restoration seemed to 
produce sufficient evidence about spatial WT changes in Vihtaneva and 
Kurkineva because hydrological changes can occur almost immediately 
after the restoration (Menberu et al., 2016). 

A water-directing ditch should direct water to the peatland area 
causing a local rise in the WT (Fig. 4). Based on our models, this is not 
the case in all ditches. This also explains why the statistical test results 
(Table 4) did not show a higher difference between the before and after- 
restoration buffers in the VESPA sites; if we had chosen only the buffers 
in which the impact is large, the bootstrap test would have produced a 
larger change between the time periods. This is evident in Vihtaneva as 
there are water-directing ditches that brought only little water to the 
restoration site. This has also been noticed by the drone image analysis 
by Isoaho et al. (2023), according to whom there was no evident wetting 
effect at the end of every ditch. This has also been verified by visual 
interpretation in the field and with the photographs that show how some 
ditches were not directing water to the peatland (Fig. 7). However, 
functioning water-directing ditches have a high impact locally and also 
some impact on larger areas, suggesting that they area a valid restora-
tion method. 

We have shown that restoration measures have local impacts in 
peatland hydrology and that the measures can also in some cases cause 
changes in larger areas within the peatlands. Therefore, our method can 
be used to assess the impact area of the peatland restoration and for 
reporting the areal change in the hydrological status of the peatlands. 
Still, in addition of improving the hydrological function of a drained 
peatland, restoration is particularly targeted to improve the ecological 
status of peatlands. Therefore, the future studies could assess the 
ecological response, such as spread of Carex vegetation, to the changes 
in the hydrology and develop methods for assessing the spatiotemporal 
changes in peatland vegetation and habitats after the restoration. 

5. Conclusion 

We have developed and tested a new approach for spatiotemporal 
peatland restoration impact assessment on WT utilising optical and 
radar satellite imagery with machine learning. The constructed model 
has a relatively good explanatory capacity and it can be used to model 
spatial WT changes caused by restoration. Our results show that there 
are differences between and within the sites, but the highest hydrolog-
ical impacts can be found near the actual restoration measures. Similar 
changes in WT have also been observed in the control sites but to a more 
limited magnitude and spatial extent. Additionally, our results support 
the assumed functionality of the water-directing ditches as a restoration 

measure. Overall, we suggest that the developed remote sensing 
approach can be used for peatland restoration monitoring and for the 
quantitative assessment of the hydrological impact area of the restora-
tion sites. 
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Fig. 7. Photographs at the endpoint of functional (a) and non-functional (b) water-directing ditches. Around a functional ditch, the WT is increased to a level near the 
peatland surface, while in the non-functional ditch, WT remains clearly underground and flow direction is unclear. 
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