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Abstract—Federated learning (FL) is recognized as a promis-
ing privacy-preserving distributed machine learning paradigm,
given its potential to enable collaborative model training among
distributed devices without sharing their raw data. However,
supporting FL over wireless networks confronts the critical
challenges of periodically executing power-hungry training tasks
on energy-constrained devices and transmitting high-dimensional
model updates over spectrum-limited channels. In this paper, we
reap the benefits of both energy harvesting (EH) and over-the-
air computation (AirComp) to alleviate the battery limitation
by harvesting ambient energy to support both the training
and transmission of local models, and to achieve low-latency
model aggregation by concurrently transmitting local gradients
via AirComp. We characterize the convergence of the proposed
FL by deriving an upper bound of the expected optimality gap,
revealing that the convergence depends on the accumulated errors
due to partial device participation and model distortion, both of
which further depend on dynamic energy levels. To accelerate
the convergence, we formulate a joint AirComp transceiver
design and device scheduling problem, which is then tackled by
developing an efficient Lyapunov-based online optimization algo-
rithm. Simulations demonstrate that, by appropriately scheduling
devices and allocating energy across multiple communication
rounds, our proposed algorithm achieves a much better learning
performance than benchmarks.

Index Terms—Federated learning, Lyapunov optimization, en-
ergy harvesting, over-the-air computation.

I. INTRODUCTION

The commercial success of diverse intelligent applications
(e.g., target advertising, autonomous driving, smart manufac-
turing) boosts the advancement of various machine learning
(ML) algorithms in both industry and academia. The con-
ventional centralized training methodology that involves raw
data exchange typically incurs huge communication load and
severe privacy leakage [1]. To tackle these issues, federated
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learning (FL) emerges as a novel distributed ML paradigm that
enables the collaborative model training among geographically
dispersed edge devices without sharing their raw data [2]. As
only gradients/models are exchanged between the edge server
and devices, FL is capable of maintaining low communication
load and mitigating privacy leakage.

Despite the great promise, the performance of FL over
wireless networks is severely affected by various commu-
nication issues, necessitating the joint communication and
learning design to facilitate wireless FL [3]–[7]. Specifically,
the authors in [3] investigate how the number of local updates
per communication round affects the learning performance
under limited resource budgets. In [4], a device scheduling
policy that accounts for both channel condition and model
importance is proposed. Under the communication and com-
putation latency constraint, the authors in [5] propose an
energy-efficient FL scheme by jointly optimizing the alloca-
tion of time, bandwidth, computation frequency, and trans-
mit power. The authors in [6] design a joint transmission
and scheduling policy to speed up the training convergence.
The joint communication-and-learning design is further ex-
tended to the multiple-input–multiple-output (MIMO) sce-
nario [7]. However, all aforementioned studies transmit high-
dimensional gradient/model with orthogonal multiple access
(OMA) schemes, leading to excessive transmission latency
when the edge devices are large in quantity.

Given the potential to enable concurrent non-orthogonal
transmission, over-the-air computation (AirComp) can be
leveraged to achieve low-latency wireless FL. AirComp-
assisted FL is initially studied in [8]–[11], where the
model/gradient updates are simultaneously uploaded by edge
devices and then directly aggregated at the edge server by
leveraging the waveform-superposition nature of radio chan-
nels. The transceiver beamforming and device scheduling are
jointly optimized for AirComp-assisted FL in [11], while re-
configurable intelligent surface is utilized in [12], [13] to assist
the gradient transmission and hence improve the aggregation
accuracy. In [14], a power control strategy is developed to
reduce the model aggregation error due to receiver noise. The
authors in [15] optimize the learning performance of over-
the-air FL by managing the interference in both uplink and
downlink transmission. As synchronization is an important
issue of AirComp, the authors in [16] propose a filtering and
sampling scheme to combat misaligned model updates at the
edge server. In addition, over-the-air FL is also considered
in many other scenarios, such as hierarchical networks [17],
device-to-device networks [18], and millimeter wave networks
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[19]. However, all the aforementioned studies overlook the
effect of high energy consumption on the FL performance
due to periodic local training and model uploading, which
is critically important especially in the scenario with battery-
limited edge devices. When the battery energy is exhausted,
the edge device will not be able to participate in the training
process and in turn degrade the learning performance. To
resolve this issue, energy harvesting (EH) is a promising
technology that can be utilized to prolong the service time of
edge devices and in turn enhance the learning performance.

EH is a disruptive technology for enabling devices with
EH capabilities to collect ambient energy, such as solar,
thermoelectric, and electromagnetic radiation, to perform com-
putation and transmission tasks [20]. With renewable energy,
the battery limitation of edge devices can be mitigated,
which motivates recent studies on EH-enabled FL [21]–[25].
Specifically, the authors in [21] develop a wireless-powered
FL framework, where devices harvest electromagnetic energy
from the edge server and dedicated charging stations. In
[22] and [23], simultaneous wireless information and power
transfer (SWIPT) is leveraged to collect energy from downlink
beamforming to support subsequent uplink model aggregation.
To fully utilize the harvested energy, various device scheduling
strategies are investigated in EH-enabled FL systems [22]–
[25]. Specifically, the authors in [22] formulate a stochastic
shortest path problem to schedule devices for reducing the
long-term energy consumption. The authors in [23] investigate
the joint design of device scheduling and resource allocation
for SWIPT-enabled unmanned aerial vehicle swarms. Besides,
the authors in [24] schedule EH-enabled devices to minimize
the training and uploading duration, while the authors in
[25] propose a greedy device scheduling policy based on the
available energy and channel coefficients.

A. Motivation and Contributions

Most prior works [21]–[25] on EH-enabled FL adopt heuris-
tic performance metrics such as energy consumption, number
of participating devices, and training time to guide resource
allocation, without explicitly accounting for the impact of
EH on the performance of wireless FL, which inevitably
leads to performance loss. Different from the existing studies,
we consider the joint communication-and-learning design and
directly minimize the expected optimality gap of the global
loss function, while taking into account the impact of EH.
Besides, most existing works on over-the-air FL only focus on
designing transmission strategies for a typical communication
round, but the ultimate FL performance is affected by the
accumulated model aggregation error over all communication
rounds. Instead of treating each communication round equally,
we optimize the EH-enabled over-the-air FL from a long-
term perspective. We note that [14] is an early attempt to
consider over-the-air FL from a long-term perspective, which
however does not account for energy-constrained devices and
assumes that future channel state information (CSI) is known
beforehand.

In this paper, we leverage the superiority of AirComp and
EH to enable communication- and energy-efficient wireless

FL, where ambient energy harvested by distributed devices
is first stored and then fully utilized to support both local
model training and uplink gradient transmission. To minimize
the expected optimality gap of the global loss function over
the entire FL training process, we jointly optimize the device
scheduling and AirComp transceiver design, while taking into
account dynamic energy arrival at each device. To tackle the
formulated stochastic optimization problem, we develop an
effective online optimization algorithm that does not depend
on any prior knowledge on future CSI and energy arrivals. The
main contributions are summarized as follows.
• We develop a novel wireless FL framework that inte-

grates AirComp and EH to enable low-latency gradient
aggregation and mitigate battery limitation. Under such
an FL framework, we derive the convergence rate and
optimality gap that explicitly characterize the impact of
the device scheduling as well as the accumulated model
aggregation error, both of which further depend on the
dynamic energy levels.

• Considering the dynamic energy arrival at each device,
we formulate a stochastic optimization problem that
requires the joint optimization of the transmit power
of edge devices, aggregation beamformer of the base
station (BS), and device scheduling to enhance the test
accuracy. We develop an online optimization algorithm
by using tools from Lyapunov optimization. In each com-
munication round, we adopt Gibbs sampling for effective
device scheduling, and optimize the transmit power and
receive beamforming vector by using the derived closed-
form expressions. Through theoretical analysis, we reveal
that the gap between the proposed online algorithm and
the optimal solution depends on the maximum transmit
power and the energy charging rate.

• We conduct extensive simulations to illustrate the superi-
ority of both the proposed over-the-air FL framework and
online optimization algorithm. Simulations show that the
proposed algorithm is capable of achieving a near-optimal
performance and outperforms the benchmarks in terms of
test accuracy. Compared with myopic benchmarks that
optimize FL systems from the perspective of individual
communication rounds, the test accuracy gain verifies that
the proposed framework is capable of better utilizing the
limited battery energy.

B. Organization and Notation

We describe the learning model, over-the-air gradient aggre-
gation, and energy update model in Section II. We conduct the
convergence analysis and formulate a joint communication-
and-learning design problem in Section III. We elaborate
the proposed online optimization algorithm and conduct the
performance analysis in Section IV. Simulation results are
illustrated in Section V. Section VI concludes this paper.

Scalar and vector are represented by italic and boldface
lowercase symbols, respectively. Cm×n represents the space
of m× n complex matrices. Superscripts (·)∗, (·)T, (·)H, and
(·)−1 refer to conjugate, transpose, Hermitian transpose, and
inverse operations, respectively. Operators E[·] and∇ stand for
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Fig. 1. An illustration of the over-the-air FL system with EH devices.

the expectation and gradient, respectively. Operators | · | and
‖·‖ denote the absolute value of scalar numbers and Euclidean
norm of vectors, respectively.

II. SYSTEM MODEL

This section presents the system model of EH-enabled over-
the-air FL, where the devices harvest energy to support local
model training and uplink gradient transmission.

A. FL Model

Consider FL over a single-cell wireless network, where
K single-antenna devices with energy harvesting and stor-
age capabilities cooperatively train a statistical global model
parameterized by w = [w1, . . . , wd]

T ∈ Rd under the co-
ordination of an edge server co-located with an M -antenna
BS, as depicted in Fig. 1. The terms edge server and BS are
used interchangeably hereafter. The set of devices is denoted
as K = {1, . . . ,K} and each device k ∈ K owns a local
dataset Dk = {(xi, yi)}Dk

i=1 with Dk = |Dk| data pairs. Each
data pair (xi, yi) consists of sample xi and its corresponding
ground-truth label yi. We assume that the local datasets are
non-overlapping and equal-sized, i.e., Dk ∩ Dj = ∅ and
Dk = Dj , ∀ k 6= j. All local datasets constitute a global
dataset D = ∪k∈KDk with D = |D| data pairs.

For a learning task, the global loss function is defined as

F (w) =
1

D

∑
(xi,yi)∈D

f(w;xi, yi), (1)

where sample-wise loss function f(w;xi, yi) ∈ R evaluates
the prediction error on data pair (xi, yi) and is denoted as

fi(w) for brevity hereafter. By denoting w? as the optimal
model parameter that minimizes F (w), we have

w? = arg min
w∈Rd

F (w). (2)

Following the principle of FL, problem (2) can be solved
by performing local training on the devices in parallel, each
of which applies the first-order optimization algorithm to
minimize its local loss function. By denoting the local loss
function Fk(w) at device k as

Fk(w) =
1

Dk

∑
(xi,yi)∈Dk

fi(w),∀ k ∈ K, (3)

we can rewrite F (w) as

F (w) =
1

D

∑
k∈K

∑
(xi,yi)∈Dk

fi(w) =
∑
k∈K

Dk

D
Fk(w). (4)

The overall training process for minimizing the global loss
in (4) is assumed to involve T rounds indexed by T =
{1, . . . , T}. In the t-th round, the following steps are per-
formed:

• The edge server distributes global model wt−1 to the
set of scheduled devices, denoted as St (the device
scheduling policy shall be elaborated in Section V-B).
The downlink transmission of wt−1 is assumed to be
error-free1.

1As in most of the existing studies [26], the edge server combats the channel
fading and receiver noise by utilizing a large transmit power.
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• After receiving wt−1, each device k ∈ St initializes its
current local model parameter by setting wt−1

k = wt−1

and then computes the local gradient as follows

gtk = ∇Fk(wt−1) =
1

Dk

∑
(xi,yi)∈Dk

∇fi(wt−1), ∀ k ∈ St.

(5)
• Each device k ∈ St uploads local gradient gtk to the

BS via multiple-access fading channels. With limited
spectrum and power resources, the local gradients upload-
ing suffers from inevitable distortion. Hence, the local
gradient of device k received at the edge server is denoted
as ĝtk. After collecting the updated local gradients {ĝtk},
the edge server updates the global model as follows

wt = wt−1 − γt
∑
k∈St Dkĝ

t
k∑

k∈St Dk
= wt−1 − γtĝt, (6)

where ĝt is the aggregated global gradient and γt is the
learning rate in the t-th round.

The above training procedures are executed repeatedly until
either a specific learning accuracy is achieved or the maximum
number of rounds is reached.

B. Over-the-Air Gradient Aggregation

The communication efficiency of FL is mainly bottlenecked
by the gradient uploading process. With OMA, the edge server
can only perform gradient aggregation after successfully de-
coding all local gradients transmitted by the selected devices.
This may lead to excessive communication latency especially
when K is large. As can be observed from (6), performing
the global gradient aggregation only requires the weighted
average of local gradients, without the need of decoding each
local gradient. Thus, we resort to adopting AirComp, which
allows the concurrent transmission of local gradients from
all selected devices over the same wireless channel, thereby
reducing the communication latency. Specifically, all devices
in St concurrently transmit their updated gradients over the
same time-frequency block. By superposing the signals over
the air, the weighted average of local gradients can be directly
obtained at the edge server, thereby avoiding the process
of decoding each local gradient. AirComp-assisted uplink
gradient aggregation is elaborated in the following.

Note that each device is only access to its own data statistics.
Before the uplink transmission, we first normalize the local
gradient at each device to facilitate its power control, i.e.,

stk =
gtk − ḡtk1

ζtk
,∀ k ∈ St, (7)

where the mean and standard deviation of the local gradient
gtk are respectively defined as

ḡtk =
1

d

d∑
j=1

gtk,j , ∀ k ∈ St, (8a)

ζtk =

√√√√1

d

d∑
j=1

(
gtk,j − ḡtk

)2

, ∀ k ∈ St. (8b)

Thus, every entry of the normalized local gradient vector
stk has zero mean and unit variance, i.e., E[stk,j ] = 0 and
E[stk,j(s

t
k,j)
∗] = 1, ∀ j ∈ {1, 2, . . . , d}.

The channel coefficient between device k and the BS in the
t-th round is denoted as htk ∈ CM×1. By assuming that all
devices are well synchronized2, the signal received at the BS
in the t-th round is

rt =
∑
k∈St

htkb
t
ks
t
k,j + nt, (9)

where btk ∈ C is the transmit scalar of device k and nt ∼
CN (0, σ2

nI) represents the additive white Gaussian noise
(AWGN) vector. Each device k has the maximum transmit
power Pmax

k , i.e.,

E
[
|btkstk,j |2

]
= |btk|2 = P tk ≤ Pmax

k ,∀ k ∈ St, (10)

where P tk is the transmit power of device k in the t-th round.
The signal after receive beamforming is

âtj = (mt)
H
rt = (mt)

H ∑
k∈St

htkb
t
ks
t
k,j + (mt)Hnt, (11)

where mt ∈ CM denotes the BS’s receive beamforming
vector. After receiving all d entries of the gradients, the global
gradient can be obtained at the edge server by performing the
post-processing as follows

ĝt =
1

|St|

(
ât +

∑
k∈St

ḡk1
)
, (12)

where ât = [ât1, . . . , â
t
d].

C. Energy Update Model

With limited battery capacity, it is challenging to support
long-term services without battery recharging at the devices.
To tackle this issue, we consider that the devices in FL
systems are powered by the energy gathered from ambient
energy sources (e.g., thermoelectric, electromagnetic radia-
tion). Specifically, by denoting device k’s energy level at the
beginning of the t-th communication round as Etb,k, we have

Etb,k ≤ Emax, ∀ k ∈ K,∀ t ∈ T , (13)

where Emax denotes the maximum battery capacity. We denote
the total amount of energy arrived at device k in the t-th
round as Eta,k. Considering inevitable energy loss, the actual
energy stored at the end of the t-th round, denoted as Ets,k,
should not be greater than the arrived energy (i.e., Eta,k), i.e.,
Ets,k ≤ Eta,k. As in [29], we consider the scenario that all
harvested energy is utilized to support the local training and
uplink gradient transmission. Thus, the dynamics of the battery
level at device k over two adjacent communication rounds is
updated as follows

Et+1
b,k = Etb,k − Etc,k − Etl,k + Ets,k, ∀ k ∈ K,∀ t ∈ T , (14)

2The symbol-level synchronization at the BS can be guaranteed by employ-
ing the timing advance (TA) technique in 5G new radio [27] which adjusts
the transmission time of each device according to the received TA command
via referring to the common clock [28].
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where Etc,k = dP tkτ
t represents the energy consumption of

device k for the local gradient transmission, τ t denotes the
transmission duration in the t-th round, and Etl,k is the local
training energy consumption, which is mainly determined by
the data size, number of CPU cycles required for computing
one sample, and CPU frequency [30], [31]. We assume that
all EH-enabled devices follow the harvest-store-use rule [32],
which means that the energy harvested in each round is stored
and can only be used in later communication rounds. Thus,
the energy consumption of device k in the t-th round should
satisfy

Etc,k + Etl,k ≤ Etb,k, ∀ k ∈ St,∀ t ∈ T , (15)

and the stored energy Ets,k in each communication round is
thus given by

Ets,k = min{ρcEta,k, Emax − (Etb,k − Etc,k − Etl,k), (16)

Ec,max}, ∀ k ∈ K,∀ t ∈ T ,

where Ec,max is the maximum charging energy in each round
and ρc ∈ (0, 1] denotes the charging efficiency. It is observed
that the stored energy in each round (i.e., Ets,k) depends on
the amount of arrived energy (i.e., Eta,k), the remaining battery
capacity (i.e., Emax−(Etb,k−dP tkτ t−Etl,k)), and the maximum
charging energy in each round (i.e., Ec,max) [33].

III. CONVERGENCE ANALYSIS AND PROBLEM
FORMULATION

Analyzing the convergence behavior of the proposed over-
the-air FL framework is essential for characterizing the impact
of device scheduling and transceiver design on the learning
performance. In this section, we first derive an explicit ex-
pression of the upper bound of the difference between the
expected value of global loss function and its optima after
T communication rounds, and then formulate a non-convex
mixed-integer resource allocation problem for enhancing the
ultimate learning performance.

A. Convergence Analysis

To facilitate the convergence analysis, we make several
common assumptions as follows.

Assumption 1 (Smoothness). The global loss function F (·)
is L-smooth, i.e.,

F (w′) ≤ F (w)+∇F (w)T (w′−w)+
L

2
‖w′−w‖2, ∀ w,w′.

(17)

Assumption 2 (Bounded Gradient). For any model parameter
vector w ∈ Rd and data pair (x, y) ∈ Rd × R, there is a
constant κ ≥ 0 satisfying

‖∇fi(w)‖2 ≤ κ. (18)

Assumption 3 (µ-Polyak-Łojasiewicz (PL) Condition [34]).
For any differentiable function F (·) : Rd → R, there is a
constant µ > 0 satisfying

‖∇F (w)‖2 ≥ 2µ
(
F (w)− F (w?)

)
,∀w ∈ Rd. (19)

It is noteworthy that Assumption 3 is a relaxed version of
the strong convexity. Here we make this assumption because
the objective functions in many practical applications only
satisfy the µ-PL condition, rather than being strongly convex.
Typical examples include least-squares and logistic regression.
According to the above assumptions, we derive the proposi-
tions as follows.

Proposition 1. With the set of scheduled devices St and
learning rate 0 < γt ≡ γ < 1

L , the gap of F (·) across two
adjacent communication rounds is bounded as

E
[
F
(
wt+1

)]
− E

[
F
(
wt
)]
≤ −γ

2
E
[∥∥∇F (wt

)∥∥2
]

(20)

+4γ3κ
(

1− |S
t|
K

)2

+ γ

d∑
j=1

MSEt, ∀ t ∈ T ,

where E[·] refers to an expectation taken over the receiver
noise and transmit symbols. Besides, MSEt denotes the mean-
squared-error of the estimated gradient ĝtj with respect to the
ground-truth gradient gtj , and is defined as

MSEt = E
[
|ĝtj − gtj |2

]
=

1

|St|
∑
k∈St

E
[∣∣∣[(mt)Hhtkb

t
k − ζtk

]
stk,j

∣∣∣2]+
σ2
n

|St|
‖mt‖2

=
1

|St|
∑
k∈St

∣∣∣(mt)Hhtkb
t
k − ζtk

∣∣∣2 +
σ2
n

|St|
‖mt‖2.

(21)

Proof. See Appendix A.

Remark 1. The first term in the right-hand-side of (20)
denotes the expected norm of the ideal global gradient, while
the second and third terms account for the errors due to partial
device participation and transmission distortion. In particular,
the convergence rate of the AirComp-assisted FL has the po-
tential to be accelerated by scheduling as many devices as pos-
sible and reducing the model aggregation error. Achieving such
a goal is non-trivial due to the following reasons. First, there
generally exists a tradeoff between scheduling more devices
and achieving a lower model aggregation error. Second, both
device scheduling and aggregation distortion depend on the
time-varying battery energy level. Insufficient battery may lead
to severe gradient distortion or even less scheduled devices.
To accelerate the convergence of FL, the device energy should
be carefully managed by jointly designing device scheduling,
transmit power, and receive beamforming.

With Proposition 1, the expected performance gap to the
optima in terms of the global loss function F (·) after T com-
munication rounds is presented in the following proposition.

Proposition 2. With any device scheduling set {St, t =
1, . . . , T}, the gap of global loss functions F (·) between the
optima and that after T rounds can be bounded as

E
[
F
(
wT
)]
− E [F (w?)] ≤ ∆T

(
E
[
F
(
w0
)]
− E [F (w?)])

)
+

T−1∑
t=0

∆T−1−t
[
4γκ

(
1− |S

t|
K

)2

+ γdMSEt
]
,

(22)
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where ∆ = 1−γµ < 1 and w0 is the initial model parameter
vector.

Proof. See Appendix B.

Remark 2. According to Proposition 2, the FL performance
after T rounds is determined by the initial gap to the optima,
partial device participation, as well as the aggregation error.
The adverse effect of the initial gap can be alleviated as the
number of communication rounds increases. According to (22),
the weight of the second term (i.e., ∆T−1−t) has a negative
exponential relationship with the index of communication
rounds (i.e., t), which indicates that the earlier communication
rounds are “less important” learning stages than the latter
communication rounds. That is because the errors caused
by partial device participation and gradient transmission
distortion affect the ultimate learning performance sightly
when t is small, while the performance is more vulnerable
to these errors in the latter rounds. Thus, it is necessary
to jointly optimize device scheduling and transceiver design
across all communication rounds to effectively allocate limited
resources and achieve a better FL performance, rather than
treating each round equally and focusing on the per-round
performance.

B. Problem Formulation

We aim to minimize the expected global loss after T
communication rounds, while taking into account the battery
operation constraints and the maximum power budget. Math-
ematically, the formulated optimization problem is as follows

P1 : minimize
mt,{btk},St

E{F (wT )} (23a)

subject to (10), (14), (15). (23b)

Remark 3. Equation (16) is only a formula to calculate
the stored energy Ets,k that is determined by the arrived
energy Eta,k and the maximum battery capacity Emax , and is
incorporated in (14). Thus, (16) is not explicitly incorporated
as a constraint of P1. Additionally, different from [35], we
consider a multi-antenna scenario, where both the transmit
scalar and receive beamforming are optimized to enhance the
performance of AirComp-assisted FL.

Note that solving problem P1 confronts the following
challenges. First, problem P1 is a non-convex mixed-integer
programming problem, involving coupled optimization vari-
ables mt and {btk}, as well as combinatorial variable St.
Second, constraint (15) is limited by the battery energy level
Etb,k that obeys the time-related evolution in (14), resulting in
the coupling between transmit power and device scheduling
over different communication rounds. Moreover, the objective
function of problem P1 is hard to be expressed in a closed
form in terms of the optimization variables because of the
complicated model update process. To handle these challenges,
we first approximate the objective function of problem P1 in
Section IV according to its upper bound derived in Proposition
2, and then propose a joint design of AirComp transceiver and
device scheduling.

IV. PROPOSED ONLINE OPTIMIZATION ALGORITHM

We propose an online optimization algorithm that effectively
solves problem P1 in this section. We first approximate the
objective function using its upper bound, and then formulate
a series of joint optimization subproblems by applying the
Lyapunov optimization. Finally, we present the analytical
results for the proposed online optimization algorithm.

A. Problem Transformation
By approximating the objective of problem P1 using the

upper bound according to Proposition 2, the reformulated
problem is given by

P2 : minimize
mt,{btk},St

T−1∑
t=0

∆T−1−t
[
4γκ

(
1− |S

t|
K

)2

+ γdMSEt
]

subject to (10), (14), (15). (24)

Note that problem P2 falls into the category of stochastic
optimization problems and has two unique challenges. Firstly,
this problem involves multiple training rounds and can be
tackled under the assumption that the complete knowledge
of random processes {htk} and {Eta,k} is known beforehand
[36], which, however is impractical to be acquired. Moreover,
although the optimal power control for AirComp-assisted FL
proposed in [37] can be derived in an off-line manner, this
method is only suitable for the single-antenna scenario, but
cannot be generalized to its multi-antenna counterpart because
the variables are highly coupled, making the corresponding
transceiver design problem NP-hard [38]. The second unique
challenge is induced by time-coupled constraint (14) over dif-
ferent communication rounds, which is difficult to be tackled
since the current action will have an impact on the future
decisions. To address these challenges, we resort to designing
an online optimization algorithm for problem P2 without
any prior information of future CSI and energy arrival [39].
Specifically, we apply Lyapunov optimization to solve this
stochastic optimization problem P2 in an online manner by
dividing it into multiple single-round subproblems, each of
which enables variables {btk}, mt, and scheduling subset St
to be optimized only based on the current system state (i.e.,
{htk} and {Eta,k}).

As constraints (14) and (15) involve optimization variables
over two adjacent communication rounds, the Lyapunov opti-
mization method cannot be directly applied. Thus, we first
recast problem P2 into a standard stochastic optimization
problem by relaxing constraint (15) and transforming (14) to
the long-term time-averaged counterpart. In particular, by re-
cursively summing up (14) across rounds t ∈ {0, 1, . . . , T−1},
the energy level in each local device over T rounds is given
by

E[ETb,k −E0
b,k] =

T−1∑
t=0

E[Ets,k −Etc,k −Etl,k], ∀ k ∈ K. (25)

We divide both sides of (25) by T and take the limit T →
∞, yielding the following equation

lim
T→∞

1

T

T−1∑
t=0

E[Etc,k + Etl,k] = lim
T→∞

1

T

T−1∑
t=0

E[Ets,k]. (26)
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Equation (26) reveals that the energy consumed for gradient
uploading and local training is supplied by the harvested
energy.

By further dividing the objective function by T , we obtain
a standard stochastic optimization problem as follows

P3 : minimize
mt,{btk},St

1

T

T−1∑
t=0

∆T−1−t
[
4γκ

(
1− |S

t|
K

)2

+ γdMSEt
]

subject to (10), (26). (27)

This problem is a relaxation of problem P2 and can be solved
by Lyapunov optimization in an online manner. In Section
IV-B, we will show that the solution obtained by the proposed
algorithm is feasible to problem P2.

B. Lyapunov Online Optimization

The long-term minimization problem can be transformed
into an online optimization problem by applying Lyapunov
optimization [40]. Specifically, we introduce a virtual queue
Qtk to record the state of the battery level at each device k.
The queuing dynamics of Qtk is updated as

Qt+1
k = Qtk − Etc,k − Etl,k + Ets,k, (28)

which incorporates the dynamics of the energy level at device
k. Note that the value of virtual queue Qtk can be negative.
Qtk is evolved based on the energy update of the t-th round in
(26). Preserving the stability of Qtk is identical to satisfying
constraint (26).

To measure the congestion of queue Qtk, the Lyapunov
function is defined as

L(Qt) =
1

2

∑
k∈K

(Qtk)2, (29)

where Qt = (Qt1, . . . , Q
t
K) is the vector of virtual queues. The

corresponding single-round Lyapunov drift conditioned on Qt

is

∆(Qt) = E[L(Qt+1)− L(Qt)|Qt], (30)

where the expectation is taken over the random system state
(i.e., {htk} and {Eta,k}). According to Lyapunov optimization
[40], our objective is to force the Lyapunov function (29) into
a low congestion region so as to stabilize queue Qtk when
solving problem P3. Therefore, we minimize the following
drift-plus-penalty metric

∆(Qt) + V E
[
∆T−1−t

[
4γκ

(
1− |S

t|
K

)2

+ γdMSEt
]∣∣∣Qt

]
,

(31)
where V > 0 is an adjustable parameter that represents how
much we emphasize on minimizing the objective of problem
P3.

According to (30) and the dynamics of the virtual queue,
the difference of the Lyapunov function between two adjacent
rounds is

L(Qt+1)− L(Qt)

=
1

2

∑
k∈St

[
(Qt+1

k )2 − (Qtk)2
]

=
∑
k∈St

[Qtk(Ets,k − Etc,k − Etl,k)
1

2
(Ets,k − Etc,k − Etl,k)2]

≤ B +
∑
k∈St

[Qtk(Ets,k − Etc,k − Etl,k)], (32)

where B =
∑
k∈St

(
max{Ec,max, E

t
l,k +dτPmax

k }
)2

/2, and
the inequality holds because the harvested energy Ets,k in each
communication round cannot exceed the maximum charging
rate Ec,max and each device is limited by its maximum power
Pmax
k . Hence, we have

(Ets,k−Etc,k−Etl,k)2 ≤
(

max
{
Etl,k + dτ tPmax

k , Ec,max

})2

.

(33)
Accordingly, for any control policy with V ≥ 0, the drift-plus-
penalty metric (31) is upper-bounded as follows

∆(Qt) + V E
[
∆T−1−t

[
4γκ

(
1− |S

t|
K

)2

+ γdMSEt
]∣∣∣Qt

]
≤ B +

∑
k∈St

QtkE
[
Ets,k − Etc,k − Etl,k|Qt

]
+ V E

[
∆T−1−t

[
4γκ

(
1− |S

t|
K

)2

+ γdMSEt
]∣∣∣Qt

]
.

(34)
Following the drift-plus-penalty minimization principle, the

system can be stabilized by minimizing the bound on ∆(Qt)
in every round. Thus, we attempt to optimize the right hand
side of (34) in each communication round. By omitting the
constant terms (i.e.,B+

∑
k∈St Qtk(Ets,k−Etl,k)), the resulting

online sub-problem is given by

minimize
St,{btk},mt

V∆T−1−t
[
4γκ

(
1− |S

t|
K

)2

+ γdMSEt
]

−
∑
k∈St

Qtkτ
td|btk|2

subject to (10). (35)

However, problem (35) remains challenging to be solved since
it involves integer variable (i.e., St) and is a mixed integer
non-linear programming problem.

C. Theoretical Performance Analysis

We now analyze the performance of the proposed Lyapunov
online optimization algorithm. The objective value of problem
P2 in the t-th round is denoted as Ct and there exists a mini-
mum value Cmin

t of Ct without considering any constraint.
Let

∑T−1
t=0 C†t be the objective value of P2 based on the

optimal solutions of online problems (35) and
∑T−1
t=0 Copt

t

stands for the objective value of P2 based on the optimal
offline solutions. The performance analysis is given as follows.
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Proposition 3. By denoting Cmin as the minimum among
{Cmin

t }Tt=1 and Cmax as the maximum among {Copt
t }Tt=1, we

have the following statements:
a) Queues {QTk } are mean rate stable, i.e.,

lim
T→∞

E[|QTk |]
T

= 0,∀ k ∈ K. (36)

b) The proposed online optimization algorithm can achieve
a performance with gap in the order of O(1/V ) to the
optimal solution, i.e.,

lim
T→∞

1

T

T−1∑
t=0

C†t ≤
B

V
+ lim
T→∞

1

T

T−1∑
t=0

Copt
t , (37)

where B is defined in (32).
c) The average queue length is bounded by

lim
T→∞

1

T

T−1∑
t=0

K∑
k=1

E
[
|Qtk|

]
≤ B + V (Cmax − Cmin)

ε
.

(38)

Proof. See Appendix C.

Proposition 3(a) demonstrates that the virtual queues intro-
duced by Lyapunov optimization can be stable. Proposition
3(b) reveals that the learning performance gap monotonously
decreases with parameter V , and thus the proposed online
optimization approach can achieve an asymptotically optimal
solution of problem P2. There is a linear relationship between
the time average queue backlog and V shown in Proposition
3(c), which presents a [O(1/V ),O(V )] performance-backlog
tradeoff. Thus, we should appropriately set parameter V to
balance the tradeoff between the queue backlog and learning
performance.

In the following section, we decouple problem (35) into two
subproblems with respect to the transceiver design and device
scheduling.

V. PROPOSED ALTERNATING ALGORITHM FOR ONLINE
DESIGN

Although we have designed a lyapunov-based online algo-
rithm for solving P2, variables are highly coupled in problem
(35). This motivates us to develop an efficient alternating
optimization approach to optimize variables by decoupling
problem (35) into two subproblems.

A. Optimizing Transmit Scalars and Receive Beamforming
Vector with Fixed St

We reformulate problem (35) as

minimize
{btk},mt

U t
[ ∑
k∈St

∣∣∣(mt)Hhtkb
t
k − ζtk

∣∣∣2 + σ2
n‖mt‖2

]
−
∑
k∈St

Qtkτ
td|btk|2

subject to (10),

(39)

where U t = V∆T−1−tγd/|St|2. However, this problem
remains non-convex because of the coupled {btk} and mt. We
develop an alternating optimization algorithm to tackle this
issue.

1) Optimizing {btk} with fixed mt: With fixed receive
beamforming vector mt, we set the transmit scalar of each de-
vice based on maximum-ratio transmission [41]. Specifically,
we set btk =

√
P tk

(mHhk)H

|mHhk| . Thus, the estimated gradient at the
BS is given by

ĝtj =
∑
k∈St

|(mt)Hhtk|
√
P tks

t
k,j + (mt)Hnt, (40)

and problem (39) can be reformulated as

minimize
{P t

k}
U t
[ ∑
k∈St

P tk(mt)HHt
km

t − 2
∑
k∈St

|(mt)Hhtk|ζtk√
P tk + σ2

n‖mt‖2 + |St|(ζtk)2
]
−
∑
k∈St

Qtkτ
tdP tk

subject to (10), (41)

where Ht
k = htk(htk)H.

Problem (41) can be divided into |St| subproblems, each
of which corresponds to the transmit power optimization of
a single device. Since the convexity of each subproblem is
determined by the value of virtual queue Qtk and constraint
(10) is linear in P tk, we derive the optimal transmit power
(P tk)? of each device k as a function of Qtk as follows.

Proposition 4. The optimal transmit power (P tk)? of each
device k in the t-th round for problem (41) is given in (42),
shown on the top of this page.

Proof. See Appendix D.

In each round t, the transmit power P tk only relies on the
values of htk and Eta,k. After obtaining P tk based on (42), Qtk
can be updated based on (28).

Note that problem P3 is relaxed from problem P2 and we
should ensure that the transmit power derived from (42) is also
feasible to problem P2. Hence, after obtaining the solution
based on (42), the solution that violates (15) is updated as
follows

P tk =

[
Etb,k − 1

t

∑t
j=1(Ejb,k − E

j
c,k − E

j
l,k)− Etl,k

τ td

]+

,

(43)
where [x]+

∆
= max{x, 0}. As (43) satisfies (15) and (26),

the solution in (43) is feasible to both problems P2 and
P3. In addition, (43) also reveals that the transmit power P tk
is determined by the historical time-averaged battery energy
level.

2) Optimizing mt with fixed {btk}: With fixed transmit
scalar {btk}, problem (39) is reformulated as an unconstrained
convex optimization problem with respect to mt. In each
round t, the optimal receive beamforming vector, denoted as
(mt)?, is

(mt)? =
( ∑
k∈St

|btk|2Ht
k + σ2

nIM

)−1 ∑
k∈St

htkb
t
kζ
t
k, (44)

which is derived by calculating its first-order optimal condition
with respect to mt.
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(P tk)? =


(

Ut|hH
km|ζ

t
k

UtmHHkm−Qt
kτ

td

)2

, if Qtk <
√
Pmax

k UtmHHkm−Ut|hH
km|ζ

t
k√

Pmax
k τtd

,

Pmax
k , if Qtk ≥

√
Pmax

k UtmHHkm−Ut|hH
km|ζ

t
k√

Pmax
k τtd

.
(42)

Algorithm 1: Online optimization algorithm for beam-
forming variables and device scheduling.

Input: Initial arbitrary S0, m0, {bk,∀k}0, T , Jmax

and s0 = [1, . . . , 1]
for t = 1, 2, . . . , T do

st,0 ← st−1

for j = 1, 2, . . . , Jmax do
Generate sampling set St,j
foreach st,j ∈ St,j do

Compute J(st,j)
end
Generate sample st,j based on distribution (45)

end
st ← st,Rs , St ← st

Compute {Pk,∀k} according to (42) with given St
if P tk violates (15) then

Compute Pk according to (43)
end
Update {bk,∀k} according to
btk =

√
P tk(mHhk)H/|mHhk|

Update mt according to (44) with given St
end
Output: St, {btk}, mt

B. Device Scheduling via Gibbs Sampling

In each communication round, we adopt the Gibbs sam-
pling to approximate the distribution of scheduling variables.
Specifically, we use a binary indicator vector st to represent
the device selection set St, i.e., st = [st1, s

t
2, . . . , s

t
K ]T with

the k-th entry stk = 1 meaning that the k-th device is selected
and stk = 0 otherwise. We obtain st from a series of samples
{st,j}, where st,j ,∀ j ∈ {1, . . . , Jmax}, denotes the j-th
sample and Jmax is the maximum number of samples. In
particular, st,j is sampled from set St,j = {st,j−1}∪{st,j−1

(i) },
based on the following distribution

π(st,j) =
exp(−J(st,j)/β)∑K

i=1 exp(−J(st,j−1
(i) )/β) + exp(−J(st,j−1)/β)

,

(45)
where st,j−1

(i) denotes the indicator vector that differs from
st,j−1 only at the i-th element, J(st,j) is the objective
value of problem (35) with respect to scheduling vector
st,j , transceiver variables mt and {btk}, and β > 0 is a
“temperature parameter” to accelerate the convergence. We
iteratively sample {st,j} until either the results stabilize or
the number of iterations reaches Jmax in each communication
round. Then, we update the scheduling vector as st = st,j

?

,
where j? is the last sample in {st,j}. The proposed online
optimization algorithm is presented in Algorithm 1.

C. Computation Complexity

In each communication round, the worst-case complexity
for computing {btk} and mt with given scheduled device set St
in Algorithm 1 is O(M3). Since the Gibbs sampling method
involves the computation for the objective value of (35)
JmaxK times, the computation complexity of the proposed
Lyapunov online optimization method in each communication
round is O(JmaxKM

3).
For the baseline, we utilize a semidefinite relaxation [42]

to solve problem (48). The worst-case computation complex-
ity for solving each semidefinite programming problem is
O(max{K,M}4 M1/2 log(1/ε)), where ε > 0 is the given
solution precision. Thus, the overall computation complexity is
O(max{K,M}4JmaxM

3/2 log(1/ε)), which is much greater
than the proposed algorithm.

VI. SIMULATION RESULTS

In this section, extensive simulations are conducted to illus-
trate the superiority of the proposed over-the-air FL framework
and the online optimization algorithm.

A. Simulation Setup

1) Learning model setting: The proposed online optimiza-
tion algorithm is evaluated by implementing the image classi-
fication tasks on the MNIST and CIFAR-10 datasets under
independent and identically distributed configurations. The
multinomial logistic regression is leveraged in this paper to
train the models with sample-wise loss functions defined as
follows

fi(w) = −
C∑
c=1

I{yi = c} log

(
exp

(
w>c xi

)∑C
j=1 exp

(
w>j xi

)) , (46)

where C represents the total number of different label cat-
egories in datasets, and wc denotes the model parame-
ter vector associated with label category c ∈ {1, . . . , C}.
The entire model parameter vector is defined as w =
[wT

1 ,w
T
2 , . . . ,w

T
C ]T. Besides, for each wc, the partial gradient

is computed as

∇fi(wc) = −

(
I{yi=c} −

exp
(
w>c xi

)∑C
j=1 exp

(
w>j xi

))xi, (47)

and the entire gradient is computed as ∇fi(w) =
[∇fi(w1)T, . . . ,∇fi(wC)T]T. The training dataset of MNIST
(or CIFAR-10) contains 60000 samples with 784 features and
10 labels (or 50000 samples with 3072 features and 10 labels),
and is randomly and uniformly partitioned into K disjoint
subsets. We set the learning rate γ as 0.05 for the MNIST
dataset and 0.15 for the CIFAR-10 dataset.
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2) Communication model setting: All devices are randomly
placed in a circular area with radius R = 25 meters, which
is centered around the BS. Each link from a device to the BS
suffers from quasi-static Rician fading. We denote the path loss
as L(d) = L0(d/d0)−α, where L0 is the path loss at distance
d0 = 1 meter, d denotes the link distance, and α refers to the
path loss exponent.

The energy blocks arrive at each device following the
Poisson process with rate λ = 2 and the energy of each
block obeys the uniform distribution within [0, 1] J. Besides,
the maximum charging energy in each round is set to Ec,max =
2 J. The default initial battery energy level at each device is
2 J. The transmission duration τ t is set to 0.01 second. The
energy consumption for local training Etl,k is set according to
[43]. Unless specified otherwise, we set other parameters as
Emax = 10 J, Pmax

k = 200 mW, L0 = −30 dB, σ2 = −90
dBm, ρc = 0.9, and α = 2.2.

B. Performance Comparison

We consider four benchmark schemes to validate the supe-
riority of the proposed online algorithm. The benchmarks are
described below:

• Optimal aggregation: All devices have sufficient battery
energy to successfully perform the local training and
transmit local gradients to the edge server through error-
free channels, while the edge server aggregates these
error-free gradients as in (6) to update the global model.

• Greedy MSE minimization: In each communication
round, edge devices are scheduled according to the pro-
posed Gibbs sampling method, i.e., devices with better
channel conditions and more energy budget are more
likely to be scheduled. Each selected device utilizes all
of its currently available energy for local model training
and transmission to minimize the MSE by solving the
following optimization problem

minimize
mt,{btk}

MSEt

subject to P tk ≤ min
{
Etb,k/(dτ

t), Pmax
k

}
,∀ k ∈ St.

(48)

• Myopic power allocation: In each communication round,
edge devices are scheduled according to the proposed
Gibbs sampling method and the maximum energy budget
of each selected devices is the currently available energy
averaged by the number of remaining rounds, i.e.,

Et
b,k

T−t+1 .
• Greedy scheduling: With fixed transmit power and re-

ceive beamforming vector, problem (35) is reformulated
as

minimize
St

V∆T−1−t
[
4γκ

(
1− |S

t|
K

)2

+
γd

|St|2
∑
k∈St∣∣∣(mt)Hhtkb

t
k − 1

∣∣∣2]−∑
k∈St

Qtkτ
tdPk. (49)

By sorting Gt = {U t|(mt)Hhtkb
t
k−1|2−Qtkτ tdPk,∀ k}

in an ascending order, we represent the k−th smallest

value of Gt as Gtk. Then the objective function in (49)
can take at most K different values as

Rt ∆
=
{

4V∆T−1−tγκ
(

1− k

K

)2

+

k∑
n=1

Gtk,∀ k ∈ K
}
.

(50)

Thus, the scheduling is performed on the k∗ devices with
the smallest U t|(mt)Hhtkb

t
k− 1|2−Qtkτ tdPk, where the

number of scheduling devices in the greedy policy (i.e.,
k∗) is the value of k corresponding to the minimum ele-
ment in Rt. Besides, we still utilize the same transceiver
design as in our proposed method.

• Random scheduling: In each communication round,
edge devices participating in the gradients uploading are
randomly scheduled (i.e., both the number and the indices
of devices are randomly determined).

In Fig. 2, we implement an image classification task to
compare the test accuracy of the proposed algorithm with
the benchmarks when V = 1 , K = 5, and N = 4 on
MNIST dataset. The proposed algorithm attains a learning
performance close to the optimal aggregation and outperforms
other benchmarks. This is because the harvested energy is fully
utilized through appropriate transceiver design of the transmit
power and device scheduling that accounts for the long-term
energy constraint. In the greedy MSE minimization scheme,
all remaining energy is utilized in each communication round,
which may lead to temporal pause of training because of
insufficient energy left for the training and transmission in
the following rounds. This coincides with its stepwise growth
of the test accuracy in Fig. 2. Since the energy may also be
wasted in the rounds with deep fading channels, its perfor-
mance is much worse than that of the proposed algorithm.
Besides, although the myopic power allocation scheme that
averages the remaining energy for the following round can
ensure the continuity of the whole training process, such a
short-sighted power allocation scheme makes the uploaded lo-
cal models more vulnerable to the channel fading and receiver
noise than other schemes, thus degrading the overall training
performance. With the same setting of simulation parameters,
we also compare the test accuracy of the proposed algorithm
with that of the benckmarks on the CIFAR-10 dataset. As
shown in Fig. 3, similar performance trends can be observed
and the proposed algorithm still outperforms other benchmarks
except optimal aggregation.

Fig. 4 illustrates the performance of the proposed algorithm
and other device scheduling schemes when V = 1, K = 5,
and N = 4. Note that the proposed device scheduling approach
based on Gibbs sampling achieves a greater test accuracy than
the greedy scheduling counterpart throughout the entire train-
ing process. This is because the second term of (49) is related
to the MSE of gradient and it may vanish with the proper
setting of optimization variables m and {P tk}. By increasing
the number of participating devices, the value of the remaining
terms in (49) monotonically decreases, which results in a
situation that all devices are scheduled in most cases and
causes energy to be wasted in deep channel fading. Therefore,
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Fig. 2. Test accuracy versus the number of training rounds with different
transmission strategies on MNIST dataset.

0 100 200 300 400 500 600

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Optimal aggregation

Proposed method

Greedy MSE minimization

Myopic power allocation

Fig. 3. Test accuracy versus the number of training rounds with different
transmission strategies on CIFAR-10 dataset.
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Fig. 4. Test accuracy versus the number of training rounds with different
scheduling strategies on MNIST dataset.
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Fig. 5. Test accuracy versus the number of training rounds with different
scheduling strategies on CIFAR-10 dataset.
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Fig. 6. Impact of weight parameter V on test accuracy.

the proposed method that can reserve energy for later favorable
propagation conditions achieves a better performance than
the greedy scheduling scheme and maintains a near-optimal
performance. Fig. 5 illustrates similar performance trends on
the CIFAR-10 dataset.

To evaluate the performance of the proposed algorithm more
comprehensively, we have compared the proposed method
with other benchmarks with different number of devices on
the MNIST dataset, as shown in Table I. All experiments are
conducted on the same global dataset with a fixed size, and
the more devices there are, the less data each device holds.
It can be observed that the proposed method outperforms all
other benchmarks under different number of devices. Besides,
the test accuracy decreases monotonically with the increase
in the number of edge devices. With a fixed global dataset,
the growth in the number of participating edge devices leads
to severer signal distortion, thus leading to larger gradients
aggregation errors and performance degradation.

Fig. 6 shows the impact of parameter V in the drift-plus-
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Fig. 7. Test accuracy versus the expected energy arrival rate under different
device scheduling schemes on MNIST dataset.
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Fig. 8. Test accuracy versus the maximum battery capacity under different
device scheduling schemes on MNIST dataset.

TABLE I
TEST ACCURACY VERSUS NUMBER OF EDGE DEVICES ON MNIST

DATASET

Benchmark K = 5 K = 10 K = 50 K = 50
Proposed method 86.97% 86.83% 86.33% 84.34%
Greedy scheduling 85.23% 85.13% 84.44% 82.44%
Greedy MSE minimization 83.82% 83.67% 83.60% 83.59%
Myopic power allocation 80.62% 80.60% 80.59% 80.55%

penalty minimization problem on the training performance
when K = 5, N = 4, and T = 600. Note that the test
accuracy refers to the classification accuracy achieved by the
global model on the test dataset after T training rounds. As
can be observed, there is a positive correlation between the
test accuracy and the value of parameter V when V ≤ 103. A
larger value of V implies the algorithm puts more emphasis on
the FL training task, leading to a better learning performance,
and the achieved accuracy after T training rounds becomes
stable after an obvious increment with V . The larger the
value of V , the smaller performance gap from the optimal
solution in (37). Furthermore, other benchmarks are not related
to V , and thus their test performance remains the same. In
addition, we find that there is a performance degradation
when V ≥ 104. This is because the average queue length
increases with V monotonically according to Proposition 3(c),
which makes these queues difficult to be stable within limited
training rounds, thereby violating the original constraints and
degrading the learning performance. Thus, we should set an
appropriate value of V to achieve a near-optimal performance
with an acceptable buffer size.

In Fig. 7, we show the test accuracy versus the expected
energy arrival rate on the MNIST dataset when V = 1, K = 5,
M = 4, Emax = 20 J, and T = 600. The achieved test
accuracy after T training rounds monotonically increases with
energy arrival rate λ in all schemes. This is because, with more
harvested energy, more devices can be scheduled to participate

in gradient aggregation and higher transmit powers can be used
to mitigate the transmission distortion. Compared with the
greedy MSE minimization scheme that directly minimizes the
MSE in each round, our proposed Lyapunov-based optimiza-
tion algorithm shows a considerable performance gain, which
verifies that the derived theoretical performance gap in (22) is a
better performance metric and the long-term energy allocation
is effective. Furthermore, the proposed algorithm outperforms
the greedy scheduling counterpart when the expected energy
arrival rate λ is less than 6, which demonstrates that our
device scheduling scheme can make full use of the limited
energy. If some devices have unfavorable channel conditions,
they are not allowed to transmit and the energy is saved
for later gradients uploading. When λ is larger than 6, the
battery level gradually becomes saturated and each device has
sufficient budget to overcome the signal distortion. Therefore,
with the increase of the expected energy arrival rate λ, almost
all devices are scheduled, and the performance gain brought
by device scheduling will gradually diminish.

Fig. 8 shows the achieved test accuracy after T = 600
training rounds versus the maximum battery capacity on the
MNIST dataset when V = 1, K = 5, and M = 4. The test
accuracy increases monotonically with the increase in battery
capacity for all schemes. However, when Emax is grater than
5 J, the performance of other schemes remains stable, except
for the myopic power allocation scheme. This is because the
battery is easy to be saturated and the learning performance
is mainly constrained by the maximum battery capacity when
Emax is less than 5 J. A larger battery capacity means more
energy can be used for model training and transmission.
However, when Emax is greater than 5 J, the battery may
not be fully charged with high probabilities and the learning
performance mainly depends on the stored energy Ets,k and
will not be affected by the maximum battery capacity. For the
myopic power allocation scheme, the energy budget in each
round is evenly distributed, and the majority of energy is saved
for subsequent rounds. Thus, its training performance shows
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a positive correlation with the battery capacity.

VII. CONCLUSIONS

In this paper, we propose an AirComp and EH empowered
communication- and energy-efficient FL framework, where
AirComp and EH facilitate low-latency gradient aggregation
and alleviate battery limitation, respectively. The theoretical
analysis of the proposed FL framework reveals that the
convergence performance can be enhanced by mitigating the
aggregation error due to partial device participation and model
distortion. We also observe that the weights of aggregation
errors differ in different rounds, which follows the “latter-
is-better” principle. Based on the convergence analysis, we
formulate a long-term stochastic optimization problem and
propose an effective Lyapunov-based online optimization al-
gorithm that only relies on the current energy arrival and CSI.
Simulation results demonstrate that our proposed algorithm
outperforms the benchmarks by appropriately scheduling de-
vices and allocating energy across different communication
rounds.

APPENDIX

A. Proof of Proposition 1
With local gradient in (5), the global model aggregation via

AirComp is

wt+1 = wt − γtĝt

= wt − γt
[∑

k∈KDkg
t
k∑

k∈KDk
+

(
ĝt − gt

)
︸ ︷︷ ︸

et
cmm

+
(
gt −

∑
k∈KDkg

t
k∑

k∈KDk

)
︸ ︷︷ ︸

et
sel

]

= wt − γt
(∑

k∈KDkg
t
k∑

k∈KDk
+ etcmm + etsel

)
= wt − γt

(
∇F (wt) + et

)
,

(51)

where etsel and etcmm refer to the model aggregation errors
induced by device scheduling and communication distortion,
respectively, and the total error is et = etcmm + etsel. Specifi-
cally, etsel can be computed as

etsel = gt −∇F (wt) =
1

|St|
∑
k∈St

gtk −
1

K

∑
k∈K

gtk, (52)

where gt = 1
|St|

∑
k∈St gtk denotes the ideal aggregated

gradients from scheduled devices. In addition, etcmm is given
by

etcmm = ĝt − gt

=
1

|St|

[ ∑
k∈St

(mt)Hhtkb
t
ks
t
k + (mt)Hnt

]

− 1

|St|
∑
k∈St

gtk +
1

|St|
∑
k∈St

ḡk1

=
1

|St|
∑
k∈St

[
(mt)Hhtkb

t
k − ζk

]
stk +

1

|St|
(mt)Hnt.

(53)

According to (51) and Assumption 1, we have

F
(
wt+1

)
− F

(
wt
)

≤
(
γ2L

2
− γ
)∥∥∇F (wt

)∥∥2
+ (γ2L− γ)

〈
∇F

(
wt
)
, et
〉

+
γ2L

2

∥∥et∥∥2

(I)

≤ −γ
2

∥∥∇F (wt
)∥∥2

+
γ

2

∥∥et∥∥2

(II)

≤ −γ
2

∥∥∇F (wt
)∥∥2

+ γ
(∥∥etcmm

∥∥2
+
∥∥etsel

∥∥2
)
,

(54)

where inequalities (I) and (II) are based on
−〈∇F (wt) , et〉 ≤ (‖∇F (wt)‖2 + ‖et‖2)/2 and
‖et‖2 ≤ 2

(
‖etcmm‖

2
+ ‖etsel‖

2
)

, respectively.
According to Assumption 2, the norm of the device selection

error is upper bounded by
∥∥∥e[t]

sel

∥∥∥2

≤ 4γ2κ (1− |St| /K)
2
.

Thus, we have

E
[
F
(
wt+1

)]
− E

[
F
(
wt
)]

≤ −γ
2
E
[∥∥∇F (wt

)∥∥2
]

+ 4γ3κ

(
1− |S

t|
K

)2

+ γE
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2
E
[∥∥∇F (wt

)∥∥2
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+ 4γ3κ

(
1− |S

t|
K
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+ γ

d∑
j=1

MSEt.

(55)

B. Proof of Proposition 2
Based on Assumption 3, inequality (55) can be further

derived as

E
[
F
(
wt+1

)]
− E

[
F
(
wt
)]
≤ −γµ

(
E
[
F
(
wt
)]
−

E [F (w?)]
)

+ 4γ3κ

(
1− |S

t|
K

)2

+ γdMSEt. (56)

By subtracting E [F (w?)] on both sides of (56), we have

E
[
F
(
wt+1

)]
− E [F (w?)] ≤ (1− γµ)

(
E
[
F
(
wt
)]

−E [F (w?)]
)

+ 4γ3κ

(
1− |S

t|
K

)2

+ γdMSEt. (57)

Recursively applying (57) for t ∈ {0, 1, . . . , T −1} and letting
∆ = (1− ςµ), we have

E
[
F (wT )

]
− E [F (w?)] ≤ ∆T

(
E
[
F (w0)

]
− E [F (w?)]

)
+

T−1∑
t=0

∆T−1−t
[
4γ3κ

(
1− |S

t|
K

)2

+ γdMSEt
]
. (58)

C. Proof of Proposition 3
Based on the upper bound of drift-plus-penalty metric (34),

we have

∆(Qt) + V C†t ≤ B +
∑
k∈St

QtkE
[
Ets,k − dP tkτ t − Etl,k|Qt

]
+ V C†t

(I)
= B + V C†t

(II)

≤ B + V Coptt , (59)
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where (I) follows according to Lemma 5 in [44] and (II)
follows because problem P3 is relaxed from problem P2.

Based on (59) and Cmin
t ≤ C†t , we have

∆(Qt) ≤ B + V (Coptt − Cmin
t ), (60)

and by summing up the both sides of above inequality over
T , we obtain

E
[
L(QT )

]
≤ TB+E

[
L(Q0)

]
+V

T−1∑
t=0

(Coptt −Cmin
t ), (61)

when we have

E
[
(QTk )2

]
≤ 2TB + 2E

[
L(Q0)

]
+ 2V

T−1∑
t=0

(Coptt − Cmin
t ).

(62)
Since E

[
|QTk |

]2 ≤ E
[
(QTk )2

]
, we can further have

E
[
|QTk |

]
≤

√√√√2TB + 2E [L(Q0)] + 2V

T−1∑
t=0

(Coptt − Cmin
t ).

(63)

Dividing both sides of the above inequality by T and taking
a limits as T →∞, we prove that

lim
T→∞

1

T
E
[
|QTk |

]
≤ lim
T→∞

√√√√2B

T
+

2E [L(Q0)]

T 2
+

2V

T 2

T−1∑
t=0

(Coptt − Cmin
t )

= 0. (64)

Thus, the virtual queues {QTk } are mean rate stable and
Proposition 3(a) is proved.

Summing up both sides of inequality (59) over T , we have
T−1∑
t=0

∆(Qt) + V

T−1∑
t=0

C†t ≤ TB + V

T−1∑
t=0

Coptt , (65)

and

V

T−1∑
t=0

C†t ≤ TB + V

T−1∑
t=0

Coptt + E
[
L(Q0)

]
− E

[
L(QT )

]
≤ TB + V

T−1∑
t=0

Coptt + E
[
L(Q0)

]
. (66)

Dividing the both sides of the above inequality by V T and
taking the limit as T goes to infinity, we have

lim
T→∞

1

T

T−1∑
t=0

C†t ≤
B

V
+ lim
T→∞

1

T

T−1∑
t=0

Coptt , (67)

where the inequality holds under the assumption that
E
[
L(Q0)

]
<∞. The proof of Proposition 3(b) is completed.

According to the Theorem 4.2 in [40], we have

∆(Qt) + V Cmin
t ≤ B + V Copt

t − ε
K∑
k=1

E
[
|Qtk|

]
. (68)

Since {MSEt}Tt=1 are upper-bounded, {Copt
t }Tt=1 are also

upper-bounded. Thus, there always exists a constant Cmax

such that Cmax = max{Copt
t }. By applying the law of

telescoping sums over T , we have

ε

T−1∑
t=0

K∑
k=1

E
[
|Qtk|

]
≤ T [B + V (max{Copt

t }

−min{Cmin
t })] + E

[
L(Q0)

]
− E

[
L(QT )

]
. (69)

Dividing (69) by εT and taking a limit as T → ∞, we
finally obtain

lim
T→∞

1

T

T−1∑
t=0

K∑
k=1

E
[
|Qtk|

]
≤ B + V (Cmax − Cmin)

ε
. (70)

The proof of Proposition 3(c) is completed.

D. Proof of Proposition 4

When U tmHHkm + Qtkτ
td ≥ 0, problem (41) is convex

with respect to
√
Pk of device k ∈ St. We consider the

following two cases:
(i) If Ut|mHhk|ζtk

UtmHHkm+Qt
kτ

td
≥
√
Pmax
k , then the objective

function of problem (41) is monotonic within constraint (10).
Thus, the optimal solution is

√
Pmax
k , i.e., (P tk)? = Pmax

k .

(ii) If Ut|mHhk|ζtk
UtmHHkm+Qt

kτ
td
≤

√
Pmax
k , then the min-

imum value of problem (41) is given by (P tk)? =(
Ut|hH

km|ζ
t
k

UtmHHkm+Qt
kτ

td

)2

.

When U tmHHkm +Qtkτ
td ≤ 0, problem (41) is concave

with respect to
√
Pk and the objective function is also mono-

tonically decreasing within constraint (10). Hence, the optimal
solution is

√
Pmax
k , i.e., (P tk)? = Pmax

k .
In summary, the transmit power of each device k is shown

in (42).
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[16] Y. Shao, D. Gündüz, and S. C. Liew, “Federated edge learning with
misaligned over-the-air computation,” IEEE Trans. Wireless Commun.,
vol. 21, no. 6, pp. 3951–3964, 2022.

[17] L. Su and V. K. N. Lau, “Hierarchical federated learning for hybrid data
partitioning across multitype sensors,” IEEE Internet Things J., vol. 8,
no. 13, pp. 10 922–10 939, 2021.

[18] H. Xing, O. Simeone, and S. Bi, “Federated learning over wireless
device-to-device networks: Algorithms and convergence analysis,” IEEE
J. Sel. Areas Commun., vol. 39, no. 12, pp. 3723–3741, 2021.

[19] L. Hu, Z. Wang, H. Zhu, and Y. Zhou, “RIS-assisted over-the-air
federated learning in millimeter wave mimo networks,” J. Commun.
Netw., vol. 7, no. 2, pp. 145–156, 2022.

[20] M.-L. Ku, W. Li, Y. Chen, and K. R. Liu, “Advances in energy harvesting
communications: Past, present, and future challenges,” IEEE Commun.
Surveys Tuts., vol. 18, no. 2, pp. 1384–1412, 2015.

[21] Q. Zeng, Y. Du, and K. Huang, “Wirelessly powered federated edge
learning: Optimal tradeoffs between convergence and power transfer,”
IEEE Trans. Wireless Commun., vol. 21, no. 1, pp. 680–695, 2022.

[22] Y. Li, Y. Wu, Y. Song, L. Qian, and W. Jia, “Dynamic user-scheduling
and power allocation for swipt aided federated learning: A deep learning
approach,” IEEE Trans. Mob. Comput., 2022.

[23] W. Wen, Y. Jia, and W. Xia, “Joint scheduling and resource allocation for
federated learning in swipt-enabled micro uav swarm networks,” China
Commun., vol. 19, no. 1, pp. 119–135, 2022.

[24] Q. V. Do, Q.-V. Pham, and W.-J. Hwang, “Deep reinforcement learning
for energy-efficient federated learning in uav-enabled wireless powered
networks,” IEEE Commun. Lett., vol. 26, no. 1, pp. 99–103, 2021.

[25] R. Hamdi, M. Chen, A. B. Said, M. Qaraqe, and H. V. Poor, “Federated
learning over energy harvesting wireless networks,” IEEE Internet
Things J., vol. 9, no. 1, pp. 92–103, 2021.

[26] D. Liu and O. Simeone, “Privacy for free: Wireless federated learning
via uncoded transmission with adaptive power control,” IEEE J. Sel.
Areas Commun., vol. 39, no. 1, pp. 170–185, 2021.

[27] A. Mahmood, M. I. Ashraf, M. Gidlund, J. Torsner, and J. Sachs, “Time
synchronization in 5G wireless edge: Requirements and solutions for
critical-mtc,” IEEE Commun. Mag., vol. 57, no. 12, pp. 45–51, 2019.

[28] O. Abari, H. Rahul, D. Katabi, and M. Pant, “Airshare: Distributed
coherent transmission made seamless,” in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), 2015, pp. 1742–1750.

[29] C. Qiu, Y. Hu, Y. Chen, and B. Zeng, “Lyapunov optimization for energy
harvesting wireless sensor communications,” IEEE Internet Things J.,
vol. 5, no. 3, pp. 1947–1956, 2018.

[30] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O. Wu, “Energy-
optimal mobile cloud computing under stochastic wireless channel,”
IEEE Trans. Wireless Commun., vol. 12, no. 9, pp. 4569–4581, 2013.

[31] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge com-
puting: Partial computation offloading using dynamic voltage scaling,”
IEEE Trans. Commun., vol. 64, no. 10, pp. 4268–4282, 2016.

[32] S. Sudevalayam and P. Kulkarni, “Energy harvesting sensor nodes:
Survey and implications,” IEEE Commun. Surveys Tuts., vol. 13, no. 3,
pp. 443–461, 2011.

[33] M. Ashraf, J. Jung, H. M. Shin, and I. Lee, “Energy efficient online
power allocation for two users with energy harvesting,” IEEE Signal
Process. Lett., vol. 26, no. 1, pp. 24–28, 2019.

[34] H. Karimi, J. Nutini, and M. Schmidt, “Linear convergence of gradient
and proximal-gradient methods under the polyak-łojasiewicz condition,”
in Joint European conference on machine learning and knowledge
discovery in databases. Springer, 2016, pp. 795–811.

[35] Y. Sun, S. Zhou, Z. Niu, and D. Gündüz, “Dynamic scheduling for
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